

المؤسسة العامة للتدريب التقني والمهني Technical and Vocational Training Corporation KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Director General for Curricula المملكة العربية السعودية المؤسسة العامة للتدريب التقني والمهني الإدارة العامة للمناهج

نسخة أولية

الخطط التدريبية للكليات التقنية Training Plans for Colleges of Technology

CURRICULUM FOR

Department Electronics Engineering

Major Industrial Electronic and Control

A Bachelor's Degree

Semesters 1439H - 2017

Industrial Electronic and Control

Index

No.	Content	Page
1.	Program Description	2
2.	Brief Description	3
3.	Study Plan	11
4.	Cover page of Courses Detail Description	15
5.	Circuit analysis	16
6.	Computer Aided Design	18
7.	Analog and pulses Circuits	20
8.	Signals and systems	23
9.	Sensors and actuators	25
10.	Digital Systems Design	28
11.	Industrial Process Control	31
12.	Power Electronics	34
13.	Embedded Systems	36
14.	Electro Mechanical Systems	37
15.	Electric Drives	39
16.	Robotics	41
17.	Digital Control System	44
18.	Renewable energy technologies	48
19.	Digital Communication Systems	49
20.	Integrated VLSI Circuit Design	51
21.	Artificial Intelligence /Elective1	53
22.	Mechatronics /Elective1	55
23.	Programmable Logic Controller PLC / Elective1	59
24.	Supervision of Industrial Process /Elective 2	63
25.	Industrial Robotics /Elective2	65
26.	Electric vehicles /Elective2	68
27.	Project	
28.	Appendix Laboratory Equipment, Workshops and Laboratories	71
29.	Circuits Laboratory	72
30.	Electronic Circuits Design Laboratory	73
31.	Measurements Laboratory	74
32.	Automatic Control Laboratory	75
33.	Power Electronics Laboratory	76
34.	Robotics Laboratory	77
35.	PLC Laboratory	78
36.	Mechatronics Laboratory	79
37.	References	80

Industrial Electronic and Control

Program Description

This Bachelor program prepares trainees for entry-level positions in the professions of the electronics and control industry. It is designed according to international standards to meet the market needs of local and regional employment. The trainees can deepen their skills in the fields related to industrial electronics as well as control and robotics. Bachelor's Degree in Industrial Electronics and Control is a practical degree. It is present in a various working environments related to industrial process control, transportation, mechatronics, embedded systems ect...

General modules are concentrated in the first and second semesters while the credit hours of the specialized modules will be the majority during the rest of the training period. This training program includes general skills in mathematics, physics, computer programming, computer aided design and English language. The specialized skills cover the modules of analog and pulse circuits, digital systems design, Embedded Systems, Electric drives, Robotics ect...,

For more flexibility in the training system, the program includes elective tracks modules during the third and the fourth semester. We have defined three optional modules per semester and the student must choose an optional module per semester.

In this training program, trainees must spend 1840 hours of training at the faculty.

The Theoretical and Practical Tests and Graduation Projects Determine Learning Outcomes and Trainee Levels for each program.

The training courses contain a theoretical part and a practical part. The practical part is tested as a practical test and the theoretical part is a theoretical test with different evaluation methods

The Bachelor Degree Graduate gets the seventh level in the Saudi Arabian Qualifications Framework (SAQF).

Admission Requirements: The applicant must have a diploma in Industrial Electronic and Control.

Industrial Electronic and Control

Brief Description

Course Name		Circuit analysis	Course Code	ELCC 333	Credit Hours	4
Descripti	on	The goals for this course are to proficiency in the analysis of D Balanced/unbalanced, three-phase distribution, Transient and steady st of filters and the series/parallel reso s-plane representation and analysis,	provide the Different type circuits, ate behavior phance circuit Bode Plots a	student with an ur es of power and po considering the po of RL RC and RLC ts, Frequency respon nd computer-aided n	iderstanding ower factor o ower genera circuits, Diffe se of a circuit nethods.	of, and a correction, tion and crent types t using the

Course Name		Computer Aided Design		ELCC 331	Credit Hours	2
Descripti	on	This course gives the trainees the f circuits. Trainees will use Matlab s programs for engineering. Special of The toolbox, Graphics Mode, Editi- component, Adding a generator, Ed The measuring instruments, Prepara	undamentals oftware, one emphasis is p ng a new des dition of the ation routing.	of the computer aid of the most popular placed on the Overvic sign, Placement, Edit characteristics of the	ed design for computer aid ew of Matlab the character generator, S	electronic led design Simulink. ristics of a imulation,

Course Name		Analog and pulses Circuits	Course Code	ELCC 342	Credit Hours	3
Descripti	ion	The course introduces analog elect much opportunity to design and fundamentals (for example, passive transistors and then gives most of amplifiers: circuits such as integrate	ronics, with l build circu e circuits mac its attention ors, amplifier	little mathematical o uits. The treatment le with resistors, cap to the design of cir s, oscillators, filters,	r physical an moves quic acitors) to de cuits using o and a servo lo	alysis and ckly from signs with perational pop.

Course Name		Signals and systems		ELCC 321	Credit Hours	3
Descripti	on	The objectives of this course are system modeling, and system clas domain and frequency domain a systems; to provide students with networks and systems; and to devel to system analysis.	to introduce ssification; to pproaches to n necessary lop students'	students to the bas develop students' the analysis of co tools and technique ability to apply mode	ic concepts of understanding ontinuous and s to analyze ern simulation	of signals, g of time- d discrete electrical n software

Electronics Engineering

Course Name		Sensors and actuators		ELCC 322	Credit Hours	3
Name Description		Sensors and actuators are two critic main purpose of this course is to principles, operating mechanisms of Actuators and their role in automat control. Examples in temperature, s	cal componer provide the f various kind tic control, p peed and ligh	nts of every closed lo most fundamental l ds of sensors. ulse width modulation at control systems.	op control sy knowledge th on technique	stem. The he physics for power

Course Name		Digital Systems Design	Course Code	ELCC 328	Credit Hours	4
Descripti	ion	This course gives trainees the architectures and their use within VHDL as well as Digital Signal P to the Real World (A/D Conversion	fundamentals electronic s rocessing DS , D/A Conves	s of the digital sy system design. Digi SP will be studied. In rsion) will be emphas	stems. Their tal Logic De aterfacing Dig sis.	different sign with sital Logic

Course Name		Industrial Process Control		ELCC 432	Credit Hours	3
Descripti	on	The main objective of this cours measurement, error detection and co design parameters of control system be able to design and implement diagrams using industrial process in	e is to desc ontrol elemer n. After acco industrial p aput and outp	wribe the basic known the state of this app mplishment of this c rocess control appli- ut devices.	vledge of th lication in inc ourse, the stu cations throu	e process lustry and dents will gh ladder

Course Name		ElectroMechanical Systems		ELCC427	Credit Hours	2
Description The Electro M electro-hydrau electromagnet motion system governing DC Designs simul		The Electro Mechanical Systems un electro-hydraulic systems, Analysi electromagnetic motion devices. M motion systems and drive electronic governing DC and AC motors. Per Designs simulated using MATLAB	nit of study in is of commo fodeling and ics using MA rformance ch and Simulin	ntroduces the trainees on power electronic simulation of electron ATLAB and Simulin haracteristics of vario	s to electrical schemes rec ically driven k. Equations ous DC and A	actuators, juired for magnetic of motion AC Motor

Course Name		Power Electronics	Course Code	ELCC452	Credit Hours	4
Descript	ion	This course examines the application covered include: modeling, analy including inverters, rectifiers, AC magnetic components and charact application examples will be present Solar, Lighting, Power supplies, both	on of electron rsis, and con C-AC and D eteristics of nted such as th theoretical	ics to energy convers ttrol techniques; des C-DC converters; a power semiconduct Aerospace, Railway, and practical laborat	sion and contr sign of power nalysis and or devices. Electrical Au ory simulatio	ol. Topics er circuits design of Numerous atomotive, ns

CourseEmbedded SystemsCourseELCC 329NameCodeELCC 329	Hours	3
DescriptionEmbedded systems are involved in almost every facet and modern life. O PDAs answering machines, microwaves ovens, televisions, video gan devices and networks routers. Late model cars may contain as man microprocessor, controlling such tasks as antilock braking, engine con control.DescriptionIn this course, the fundamentals of embedded systems hardware and firm discovered. Issues such us embedded processor selection, hardware- fir logic circuit design, circuit layout, circuit debugging, developin architecture, firmware design and firmware debugging.	e. Cell phone games, cons any as 65 control, aud rmware desi firmware pa ping tools,	es, pagers, oles, GPS embedded lio system gn will be urtitioning, firmware

Course Name	Γ	Digital Communication Systems	Course Code	ELCC 473	Credit Hours	3
Descripti	on	This course covers the technique emphasis is placed on the Review o Quantization, Source and channel ASK, QAM) Introduction to Wirele Students are expected to demonstrat communication systems, Analyse an techniques.	es of modern f the digital of waveforms, f ess communic te the ability nd Design op	n digital communication, Codi modulation, and den eation. to Understand basic of timum receivers for o	ation systems ing for discret nodulation (P components o digital modula	s. Special e sources, SK, FSK, f digital ation

Electronics Engineering

Course Name		Electric Drives	Course Code	ELCC434	Credit Hours	3
Descripti	ion	Motion control in industrial, commelectrical drives. This course providents of an electrical drive set students are expected to select an efficient manner and should be ablictopics covered are: characteristics drives; DC motor drives: speed and and variable frequency control; syn frequency control; brushless DC drives in the set of the set	mercial and vides student ystem and the d size electric e to perform and sizing of d torque cont inchronous me ives; drives ap	transportation system s with the working eir control. After con ical drives for any g design of different of power semicondu rol; induction motor otor drives: open-loo pplication examples.	ns is carried knowledge of mpletion of th given applicat drive composi- ctor controlled drives: volta p, closed-loo	out using of various his course, tion in an hents. The ed electric ge control p variable

Course Name		Robotics		ELCC 464	Credit Hours	3
Descripti	ion	Design of robotics systems that subsystems, and fundamental algor concepts in robotics and current st where students work in teams to con	combine en ithms for sen tate of the ar nstruct series	mbedded hardware, sing and control to e t. Lecture closely the of subsystems leadir	software, m expose studen ed to design ng to final pro	iechanical ts to basic laboratory ject.

Course Name		Digital Control System	Course Code	ELCC 437	Credit Hours	3
Descripti	ion	The course introduces the fundame control system. The topics cover systems dynamics, sampled-data sy models and digital controllers des illustrate the concepts clearly.	ental concept modern con estems, Z-trar sign. A numl	s, principles and app trol design techniqu asform, digital transfe per of chosen real p	plications of t es, including er functions, s problems are	the digital , Discrete state space solved to

Course	Pro	grammable Logic Controller PLC	Course	ELCC 425	Credit	4		
Name		Elective1	Code	ELCC 433	Hours	4		
		This course gives the trainees the fundamentals of Programmable Logic Controller (PLC)						
		technology including programming techniques. The functional material design will have to						
		be examined. The design and programming of controller circuits will be highlighted using						
Descripti	on	examples from industrial applications. The application of PLC's in process automation will						
_		be studied. An overview of functional hardware design will be included. The equipment						
		used in Laboratory will give trainees practical programming and troubleshooting skills used						
		in industrial maintenance.	-		-			

Course Name		Artificial Intelligence <u>Elective1</u>	Course Code	ELCC 474	Credit Hours	4
Descripti	on	The main purpose of this course students so that they can understa eliminate theoretic proofs and forma the full picture of AI easily. Stud graduate school for further study. solving, reasoning, Planning, and automatic programming, and machi	is to provid nd what the al notations a dents who be The main t d Natural la ne learning.	e the most fundame AI is. Due to limite s far as possible, so t ecome interested in copics of this course anguage understand	ental knowled ed time, we we hat the studer AI may go e include: the ing, compute	lge to the will try to nts can get on to the e problem er vision,

Course Name		Mechatronics <u>Elective1</u>	Course Code	ELCC 428	Credit Hours	4
Descripti	on	Modern products (such as auto communication satellites, etc.) and machines, industrial robotics and a and mechatronics modules. Their mechanical, electric, electronic ar engineering knowledge. This course introduces to student design principles of using mechat processes and systems. Several lab- presented with innovative case stud prepare the students to read literatu innovations to the field.	omobiles, ca d manufactur autonomous r creations in ad software s the basic r tronics to ma oriented assi dies in divers ure, understar	meras, medical eq ring equipment(such systems, etc.) contai require engineers to subsystems using ad mechatronics system eet functionality req gnments and team-ba e application domain nd research problems	uipment, spa as 3D print n numerous of be able to dvanced scient components uirements of ased course pr as. The course s, and identif	ace craft, eers, CNC computers combine ntific and s, and the products, rojects are e will also y possible

Course Name	I	Renewable energy technologies	Course Code	ELCC 411	Credit Hours	2		
		This course discusses the use of solar energy (thermal and photovoltaic), wind, geothermal,						
		as well as energy heat transfer. The potential of using renewable energy technologies to the						
		extent possible, replacement for conventional technologies, and the possibility of combining						
		renewable and non-renewable energy technologies in hybrid systems.						
Descripti	on	In the end of the course, students will be able to Describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels. And they can explain the technological basis for harnessing renewable energy sources Recognize the effects that current energy systems based on fossil fuels have over the environment and the society						

Industrial Electronic and Control

Course Name	I	ntegrated VLSI Circuit Design	Course Code	ELCC 442	Credit Hours	2
Descripti	on	This is an introductory course whi design in CMOS technology. In the structures of designing digital VLS CMOS fabrication processes, CM interconnect analysis, CMOS chip design tools and methodologies, VL The course is designed to give the required to carry out a complete silicon.	ch covers ba nis course, w SI systems in OS design r layout, simu SI architectu e student an digital VLS	sic theories and tech e will study the fun clude CMOS device rules, static and dyn ulation and testing, rre. understanding of the I (Very-Large-Scale	aniques of dig damental con s and circuits namic logic s low power to e different de Integration)	gital VLSI accepts and structures, echniques, sign steps design in

Course Name	S	upervision of Industrial Process <u>Elective 2</u>	Course Code	ELCC 412	Credit Hours	3
Descripti	on	This course reviews principles methodologies of bond graph are i The topics cover the bond graph Bond Graphs for FDI, Actuator a Structurally Non-isolatable Faults, Fault Tolerant Control.	used on p ntroduced fo model based nd Sensor P Multiple Fau	process supervision. r analysis of industri qualitative FDI, Dia lacement for Recon It Isolation Through	The princ. ial process su agnostic and figuration. Is Parameter E	iples and pervision. Bi-causal olation of estimation,

Course Name		Industrial Robotics <u>Elective2</u>	Course Code	ELCC 436	Credit Hours	3
Descripti	on	Understand the different types of in and dynamic modeling. Different r will gain experience in handling and about design, simulate and program proposed work the student will get commercial IDE (Integrated Develop	ndustrial robo methods of p d programmi m robotic in by himself d opment Envir	ots, components, arch rogramming robots a ng real industrial rob dustrial applications ifferent functionalitie onment) for industria	nitecture and are discussed ots. They acq . Thanks to s es about a cor .l robot progra	kinematic . Students uire skills simulation nmon and amming.

Electronics Engineering

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula

Industrial Electronic and Control

Course Name	Electric vehicles <u>Elective2</u>		Course Code	ELCC 463	Credit Hours	3
Descripti	on	Conventional cars. Electric ve Architecture of Electrical vehicle Electric Vehicle system. Hybrid ve Automotive control area protocols. Types of power storage used in Ele control strategy. Auxiliary electri Automotive semiconductor device actuators and control. Testing of of Safety components of Electrical veh	hicle develo system (two, hicles with d Types of mot ectrical vehicl cal system i es, componer electric moto nicles. Passen	opment history. We three and four whe trive trains for series for used with special es. Power management n vehicles. Automotistic and sensors. Automotistic and sensors. Automotistic ger safety system.	Vehicle spec celers). Grid , parallel, con- duty and con- ent system str otive steering tomotive mo ybrid electric	ifications. connected mbination. structions. rategy and systems. tor drives vehicles.

Industrial Electronic and Control

Study Plan

	Sixth Semester										
No	Course		Course No	ma	Pro Dog		No. of Units				
110.	Code		Course Ma	anne	TTE. Key	CRH	L	Р	Т	СТН	
1	MATH 301		Mathematics	(1)		3	2	2	0	4	
2	PHYS 301		Physics			3	2	2	0	4	
3	ENGL 301		English Language (1)			3	3	0	1	4	
4	ELCC 333		Circuit analysis			4	3	2	1	6	
5	GNRL402	Engin	eering project M	anagement		3	3	0	0	3	
6	ELCC 331 Computer Aided Design				2	0	4	0	4		
Total 18 13 10 2 24							25				
	CRH:Cre	edit Hours	T:Tutorial	СТІ	I:Conta	et Hours					

			Se	venth Seme	ster						
No	Course		Course No.	mo	Pro Pog		No. of Units				
110.	Code		Course Ma	inte	TTe. Key	CRH	L	Р	Т	СТН	
1	MATH 302		Mathematics	(2)	MATH301	3	2	2	0	4	
2	ELCC 342	А	nalog and pulses (Circuits	ELCC 333	3	2	2	0	4	
3	ELCC 321		Signals and syst	ems	MATH 301	3	3	0	0	3	
4	ELCC322		Sensors and actu	ators	PHY 301	3	2	2	0	4	
5	ELCC 328		Digital Systems D	esign		4	3	2	0	5	
6	ELCC 432	1	ndustrial Process (Control	ELCC 331	3	2	2	0	4	
Total 19 14 10 0					0	24					
	CRH:Cre	dit Hours	L:Lecture	P:Practical	T:Tutorial	CTH	I:Contac	t Hours			

	Eighth Semester										
No	Course		Course Ne	mo	Dro Dog		No. of Units				
110.	Code			line	rre. Key	CRH	L	Р	Т	СТН	
1	STAT 303	Sta	tistics and Pro	bability		3	3	0	1	4	
2	ENGL302	E	nglish Langua	ige (2)	ENGL301	3	3	0	1	4	
3	GNRL 405	E	Engineering Eco	nomy		2	2	0	0	2	
4	ELCC452		Power Electror	nics	ELCC342	4	3	2	1	6	
5	ELCC 329		Embedded Syst	tems	ELCC328	3	2	2	1	5	
6	ELCC427	Ele	ctromechanical S	Systems	ELCC333	2	2	0	1	3	
	Total 17 15 4 5 24							24			
	CRH:Credit Hours L:Lecture P:Practical T:Tutorial CTH:Contact Hours										

	Ninth Semester										
No	Course		Course Neme		Dro Dog	No. of Units					
110.	Code			line	TTE. KEY	CRH	L	Р	Т	СТН	
1	ELCC 434		Electric Drive	S	ELCC452	3	2	2	1	5	
2	ELCC 464		Robotics		ELCC 322	3	2	2	1	5	
3	ELCC 437		Digital Control Sy	stem	ELCC 432	3	2	2	1	5	
4	ELCC ***		Elective 1			4	3	2	1	6	
5	ELCC 411	Rene	wable Energy Tec	hnologies	ELCC 342	2	2	0	1	3	
	Total 15 11 8 5 24							24			
CRH:Credit Hours L:Lecture P:Practical T:Tutorial CTH:Contact Hours											

Industrial Electronic and Control

	Tenth Semester									
No	Course		Course Name		Dro Dog		No.	of U	nits	
110.	Code		Course Iva	ille	rre. Key	CRH	L	Р	Т	СТН
			Creaturation Dro	in at	ELCC 452		•		•	<u> </u>
1	ELCC 491 Graduation Pr		Ject	ELCC 329	4	2	4	U	0	
2	ELCC 473	Digita	al Communicatio	n Systems	ELCC 328	3	2	2	1	5
3	ELCC 442	Integ	grated VLSI Circu	iit Design	ELCC329	2	2	0	0	2
4	ELCC ***		Elective 2			3	2	2	1	5
	Total 12 8 08 2 18									
	CRH:Credit Hours L:Lecture P:Practical T:Tutorial CTH:Contact Hours									

Total Number of Semesters Credit Units		L	Ρ	Т	СТН
		61	40	14	115
Total of training Hours	1840				
16 * 115					

Industrial Electronic and Control

Elective Courses

	Elective Course 1							
No.	Course	Course Name	Dro rog	No. of Units				
	Code	Course Maine	11c. 1cq	CRH	L	Р	Т	CTH
1	ELCC 435	Programmable Logic Controller PLC	ELCC 328	4	3	2	1	6
2	ELCC 428	Mechatronics	ELCC 322	4	3	2	1	6
3	ELCC 474	Artificial Intelligence	ELCC 331	4	3	2	1	6
	CRH:Credit Hours L:Lecture P:Practical T:Tutorial CTH:Contact Hours							

	Elective Course 2							
No.	Course Name Pre reg		No. of Units					
	Code	Course Maine	11e. req	CRH	L	Р	Т	CTH
1	ELCC 412	Supervision of Industrial Processes	ELCC 435	3	2	2	1	5
2	ELCC 436	Industrial Robotics	ELCC 474	3	2	2	1	5
3	ELCC 463	Electric vehicles	ELCC 428	3	2	2	1	5
	CRH:Credit Hours L:Lecture P:Practical T:Tutorial CTH:Contact Hours							

Industrial Electronic and Control

Courses Detail Description

Department	Electronics Engineering	Major	In	Industrial Electronic Control				&
Course Name	Circuit Analysis	Course Code		ELC				
D		Credit Hours		4				6
Prerequisites		CRH	L	3	Р	2	Т	1
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

The goals for this course are to provide the student with an understanding of, and a proficiency in the analysis of:

Topics:

- Different types of power and power factor correction.
- Balanced/unbalanced, three-phase circuits, considering the power generation and distribution.
- Magnetically coupled circuits and their application in electric transformers.
- Transient and steady state behavior of RL RC and RLC circuits.
- Different types of filters and the series/parallel resonance circuits.
- Frequency response of a circuit using the s-plane representation and analysis, Bode Plots and computer-aided methods.
- Different representations and parameters of two-port networks, e.g. Z-parameters, Y-parameters, h-parameters and g-parameters.

Experiments: If applicable, it will support the course topics.

- Charles K. Alexander and Matthew N. O. Sadiku, Fundamentals of Electric Circuits. Fifth Edition. McGraw-Hill.
- Thomas L.Floyed and David M Buchla, Electronics fundamentals circuits, devices, and application, 8th edition Pearson

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction (general background).	2
2	Balanced Three-Phase Voltages and Currents Balanced Wye-Wye and balanced Wye-Delta Circuits.	6
3	Balanced Delta-Delta and Delta-Wye Circuits, power in Balanced 3-Phase Circuits and power factor correction of 3-phase circuits	6
4	Unbalanced Three-Phase Y-Y, 3-wire & 4-wire Circuits, unbalanced 3-Ph Δ - Δ Circuits with & without T.L. impedance and unbalanced Three-Phase Y- Δ and Δ -Y Circuits.	6
5	Self and Mutual Inductance, energy in coupled coils, ideal transformers and Autotransformers.	6
6	Transfer Function, Bode Plots	6

7	Series and	parallel resonance	6					
8	Passive Fil	ters (Low-pass, High-pass, Band-pass, Band-Reject)	6					
9	Standard i Circuits. S	nputs (step – ramp – impulse), source-free RC Circuits and source-free RL tep Response of RC, RL	6					
10	Step Respo	tep Response RLC series Circuits and RLC parallel circuit. 6						
11	Impedance Z-Parameters, admittance Y-parameters, Hybrid H-Parameters, Inverse6Hybrid G-Parameters, Transmission (T) Parameters, Inverse T parameters, Series and parallel connection of networks.6							
12	Final Assessment.							
Textbook		 Charles K. Alexander and Matthew N. O. Sadiku, Fundamentals of H 5th Edition. McGraw-Hill Thomas L.Floyed and David M Buchla, Electronics fudamentals circu application, 8th edition Pearson. 	Electric Circuits. its, devices, and					

	Detailed of Practical Contents					
No.	Contents	Hours				
1.	Power measurement in balanced 3-phase system	4				
2.	Power measurement in unbalanced 3-phase system	4				
3.	Power factor compensation in single phase system 4					
4.	Power factor compensation in 3-phase system2					
5.	Single phase and three phase Transformer and Auto-transformer6					
6.	Series and parallel resonance	4				
7.	7. Passive filter 4 First order circuits (RC, RL, CR, LR) 4					
8.	8.Second order circuits (RLC)2					
9.	9. Final Assessment.					
Tex	Textbook					

	Charles K. Alexander and Matthew N. O. Sadiku, Fundamentals of Electric Circuits. 5th Edition. McGraw-Hill
Textbooks	• Thomas L.Floyed and David M Buchla, Electronics fundamentals circuits, devices, and application, 8th edition Pearson

Department	Electronics Engineering	Major	Industrial Electronics & Control				s &	
Course Name	Computer Aided Design	Course Code		ELCC 331				
		Credit Hours 2				CTH		4
Prerequisites		CRH	L		Р	4	Т	
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								
~								

This course gives the trainees the fundamentals of the computer aided design for electronic circuits. Trainees will use Matlab software, one of the most popular computer aided design programs for engineering. Special emphasis is placed on the Overview of Matlab Simulink. The toolbox, Graphics Mode, Editing a new design, Placement, Edit the characteristics of a component, Adding a generator, Edition of the characteristics of the generator, Simulation, The measuring instruments, Preparation routing.

Topics :

- Introduction to System Simulation Techniques and Applications
- Fundamentals of MATLAB Programming
- MATLAB Applications in Scientific Computation
- Mathematical Modeling and Simulation with Simulink
- Commonly Used Blocks and Intermediate-level Modeling Skills
- Advanced Techniques in Simulink Modeling and Applications
- Modeling and Simulation of Engineering Systems
- Modeling and Simulation of Non-Engineering Systems

References :

Dingyu Xue, Yang Quan Chen, System simulation techniques with Matlab and Simulink, 2014 John Wiley & Sons, Ltd

	Detailed of Practical Contents	
No.	Contents	Hours
1	Introduction to System Simulation Techniques and Applications	8
	Overview of System Simulation Techniques m Development of Simulation Software,	
	development of Earlier Mathematics Packages, Development of Simulation Software	
	and Languages	
2	Fundamentals of MATLAB Programming	8
	MATLAB Environment, Data Types in MATLAB, Matrix Computations in MATLAB,	
	Flow Structures, Programming and Tactics of MATLAB Functions, Two-dimensional	
	Graphics in MATLAB, Three-dimensional Graphics, Graphical User Interface Design	
	in MATLAB	
3	MATLAB Applications in Scientific Computation	8
	Analytical and Numerical Solutions, Solutions to Linear Algebra Problems, Solutions	
	of Calculus Problems, Solutions of Ordinary Differential Equations, Nonlinear	
	Equation Solutions and Optimization, Dynamic Programming and its Applications in	

	Path Planning	
4	Mathematical Modeling and Simulation with Simulink	8
	Description of the Simulink Block Library, Simulink Modeling, Model Manipulation	
	and Simulation Analysis, Illustrative Examples of Simulink Modeling, Modeling,	
	Simulation and Analysis of Linear Systems, Simulation of Continuous Nonlinear Stochastic Systems	
5	Commonly Used Blocks and Intermediate-level Modeling Skills	8
-	Commonly Used Blocks and Modeling Skills, Modeling and Simulation of	-
	Multivariable Linear Systems, Nonlinear Components with Lookup Table Blocks,	
	Block Diagram Based Solutions of Differential Equations, Output Block Library,	
	Subsystems and Block Masking Techniques	
6	Advanced Techniques in Simulink Modeling and Applications	8
	Command-line Modeling in Simulink, System Simulation and Linearization, S-function	
	Programming and Applications, Examples of Optimization in Simulation: Optimal	
	Controller Design Applications	
7	Modeling and Simulation of Engineering Systems	8
	Physical System Modeling with Simscape, Description of SimPowerSystems, Modeling	
	and Simulation of Electronic Systems, Simulation of Motors and Electric Drive	
0	Systems Modeling and Simulation of Non Engineering Systems	(
ð	Modeling and Simulation of Pharmacokinetics Systems Video and Image Processing	0
	Systems, Finite State Machine Simulation and Stateflow Applications, Simulation of	
	Discrete Event Systems with SimEvents	
9.	Final Assessment.	2
		_
	Dingyu Xue, Yang Quan Chen, System simulation techniques with Ma	tlab and
	Textbook: Simulink, 2014 John Wiley & Sons, Ltd	

Department	Electronics Engin	eering	Major	Industrial Electronics & Control				&	
Course Name	Analog and pulses	Course Code	ELCC341						
D ::/	EL CC 222			3			СТН		4
Prerequisites	ELCC 333		CRH	L	2	Р	2	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours				urs					

The course introduces analog electronics, with little mathematical or physical analysis and much opportunity to design and build circuits. The treatment moves quickly from fundamentals (for example, passive circuits made with resistors, capacitors) to designs with transistors and then gives most of its attention to the design of circuits using operational amplifiers: circuits such as integrators, amplifiers, oscillators, filters, and a servo loop.

Topics:

- Operational Amplifiers
- Operational Amplifiers Applications
- Power Amplifiers
- Linear-Digital ICs
- Feedback and Oscillator Circuits
- Power Supplies (Voltage regulators)
- Other Two-Terminal Devices
- pnpn and Other Devices
- Oscilloscope and Other Measuring Instruments

Experiments: If applicable, it will support the course topics

- Kleitz, Digital Electronics: Pearson New International Edition: A Practical Approach with VHDL, Pearson; 9 edition (20 Sept. 2013).
- Boylestad and Nashelsky, Electronic Devices and Circuit Theory, 6th edition, Prentice Hall,1996
- Savant, Roden and Carpenter, Electronic Design, 2nd edition, Addison-Wesley, 1991
- Thomas L.Floyed and David M Buchla, Electronics fundamentals circuits, devices, and application, 8th edition Pearson.

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction (general background).	2
2	Operational Amplifiers	4
3	Operational Amplifiers Applications	4
4	Power Amplifiers	4
5	Linear-Digital ICs	4
6	Feedback and Oscillator Circuits	2
7	Power Supplies (Voltage regulators)	2
8	Other Two-Terminal Devices	2
9	p-n-p-n and Other Devices	2
10	Oscilloscope and Other Measuring Instruments	4
11	Final Assessment.	2
 Kleitz, Digital Electronics: Pearson New International Edition: A Practical Approach with VHDL, Pearson; 9 edition (20 Sept. 2013). Boylestad and Nashelsky, Electronic Devices and Circuit Theory, 6th edition Prentice Hall,1996. 		

	Detailed of Practical Contents	
No.	Contents	Hours
1.	Introduction of Electronics	2
2.	Operational amplifier (op amp) circuits:	2
3.	Op Amp I – Terminal voltages	2
4.	Op Amp II – Terminal currents	2
5.	Op Amp III – Voltage follower	2
6.	Op Amp IV – Inverting and no inverting amplifiers	2
7.	Single-Stage Integrated-Circuit Amplifiers	2
8.	Differential and Multistage Amplifiers	2
9.	Operational-Amplifier and Data-Converter Circuits	2
10.	Filters and Tuned Amplifiers	2
11.	Digital CMOS Logic Circuits	2
12.	Memory and Advanced Digital Circuits	2
13.	Signal Generators and Waveform-Shaping Circuits	2
14.	555 Timer	4
15.	Final Assessment	2
Tex	 Boylestad and Nashelsky, Electronic Devices and Circuit Theory, 6th Hall,1996. Kleitz, Digital Electronics: Pearson New International Edition: A Practica VHDL, Pearson; 9 edition (20 Sept. 2013). Recommended Software: Electronic Workbench. 	edition,Prentice

	• Boylestad and Nashelsky, Electronic Devices and Circuit Theory, 6th edition, Prentice Hall, 1996.
Textbooks	• Kleitz, Digital Electronics: Pearson New International Edition: A Practical Approach with VHDL, Pearson; 9 edition (20 Sept. 2013).
	• Recommended Software: Electronic Workbench.

Department	Electronics Engineering	Major	Industrial Electronics & Control				: &	
Course Name	Signals and systems	Course Code		ELCC321				
D		Credit Hours	3		СТН		3	
Prerequisites	MATH 301	CRH	L	3	Р	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

The objectives of this course are to introduce students to the basic concepts of signals, system modeling, and system classification; to develop students' understanding of time-domain and frequency domain approaches to the analysis of continuous and discrete systems; to provide students with necessary tools and techniques to analyze electrical networks and systems; and to develop students' ability to apply modern simulation software to system analysis.

Topics:

- Introduction to signals and systems
- Linear time-invariant systems.
- Fourier Series
- Fourier Transform
- Time and frequency characterization of signal and systems
- Sampling
- Communication systems
- The Laplace Transform
- The Z-Transform
- Linear Feedback systems

Experiments: If applicable, it will support the course topics

- Openheim and Wilsky, Signals and Systems, Prentice Hall, 1992
- Frederick and Carlson, Linear Systems, Prentice Hall.

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction to signals and systems	2
2	Linear time-invariant systems	3
3	Fourier Series	6
4	Fourier Transform	6
5	Time and frequency characterization of signal and systems	6
6	Sampling	3
7	Communication systems	6
8	The Laplace Transform	4
9	The Z-Transform	4

10	Linear Fee	Linear Feedback systems			
11	Final Asse	inal Assessment			
 Shaila Dinkar Apte, Signals a University Press, 2016 Openheim and Wilsky, Signals a 		 Shaila Dinkar Apte, Signals and Systems: Principles and Application University Press, 2016 Openheim and Wilsky, Signals and Systems, Prentice Hall, 1992. 	ons, Cambridge		

Textbooks	• Shaila Dinkar Apte, Signals and Systems: Principles and Applications,							
	Cambridge University Press, 2016							
	Openheim and Wilsky, Signals and Systems, Prentice Hall, 1992.							

Department	Electronics Engineer	ring	Major	In	Industrial Electronics & Control				&
Course Name	Sensors and Actuate	ors	Course Code		ELCC322				
D	sites PHY 301		Credit Hours	3			СТН		4
Prerequisites			CRH	L	2	Р	2	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

Introduction to physics, principles, and operating mechanisms of various kinds of sensors. Using sensors in designing and developing for different applications. Sensor technology, resistive, capacitive, inductive and magnetic transducers, basic sensor structures for each type, sensing effects, physical sensors and their applications. Dynamic range, linearity, threshold, accuracy, operational environmental condition strain gauge, thermocouple, RTD, photo sensors for measuring chemical quantities. Light sensors, flow and speed sensors, radioactive sensor. Introduction to digital sensors. Actuators and their role in automatic control, pulse width modulation technique for power control. Examples in temperature, speed and light control systems.

Topics:

- Sensors and actuators: Definitions, terminology, classification
- Sensors characteristics and parameters.
- Thermal sensors.
- Mechanical sensors.
- Pressure sensors
- Optical sensors and Optical Fiber.
- Chemical and physical sensors for gas and liquid media.
- Gas sensors
- Biosensors, RTD
- Nano-sensors.
- Capacitive and resistive sensors, Magnetic sensors, Hall-effect sensors, piezoelectric transducers, Optical sensors-air path, Fibre-optic sensors, Ultrasonic sensors
- Temperature Measurement: Thermoelectric effect sensors, Quartz thermometers, intelligent temperature-measuring instruments, Acoustic thermometers
- Wheatstone bridge and Instrumentation Amplifier.

Experiments: If applicable, it will support the course topics **References** :

- Nathan Ida , Sensors, Actuators, and Their Interfaces: A Multidisciplinary Introduction, SciTech Publishing, Year: 2014
- Andrzej M. Pawlak, "Sensors and Actuators in Mechatronics: Design and Applications", CRC Press Taylor & Francis Group, Last Edition, 2006.

No.	Contents	Hours
1	Introduction to sensors and actuators	1
2	Sensors and measurement: Definitions, terminology, classification	2

3	Sensors characteristics and parameters	2				
4	Thermal sensors.	2				
5	Mechanical sensors.	2				
6	Pressure sensors	2				
7	Optical sensors and Optical Fiber	2				
8	Chemical and physical sensors for gas and liquid media.	2				
9	Gas sensors	2				
10	RTD	2				
11	Biosensors	2				
12	Nano-sensors	2				
13	Wheatstone Bridge and Instrumentation Amplifier	2				
14	Capacitive and resistive sensors, Magnetic sensors, Hall-effect sensors, Piezoelectric transducers, Optical sensors-air path, Fibre-optic sensors, Ultrasonic sensors	2				
15	Temperature Measurement: Thermoelectric effect sensors, Quartz thermometers, Intelligent temperature-measuring instruments, Acoustic thermometers	3				
16	Final assessment	2				
Te	 Nathan Ida , Sensors, Actuators, and Their Interfaces: A Multidisciplinary Introduction, SciTech Publishing, Year: 2014 Andrzej M. Pawlak, "Sensors and Actuators in Mechatronics: Design and Applications", CRC Press – Taylor & Francis Group, Last Edition, 2006. 					

	Detailed of Practical Contents		
No.	Contents	Hours	
1.	Introduction.	2	
2.	Thermistor (NTC).	2	
3.	Resistance Temperature Detector (RTD).		
4.	Thermocouple.	2	
5.	Length sensor.	2	
6.	Linear variable differential transformer (LVDT).	2	
7.	Strain Gauge.	2	
8.	Pressure sensor (piezoresistive).	2	
9.	Ultrasound sensor (Doppler effect).	4	
10.	Gas sensors.	2	
11.	Biosensors	2	
12.	Nano-sensors	2	
13.	Wheatstone Bridge and Instrumentation Amplifier1	2	
14.	Wheatstone Bridge and Instrumentation Amplifier2	2	
15.	Final assessment	2	
Tex	 John P. Bentley, principles of measurement systems, 4th edition. J. Fraden, "Handbook of Modern Sensors" (AIP) Third Edition. 		

Textbooks	 Nathan Ida , Sensors, Actuators, and Their Interfaces: A Multidisciplinary Introduction, SciTech Publishing, Year: 2014 Andrzej M. Pawlak, "Sensors and Actuators in Mechatronics: Design and Applications" CRC Press – Taylor & Francis Group Last Edition 2006
	 John P. Bentley, principles of measurement systems, 4th edition. J. Fraden, "Handbook of Modern Sensors" (AIP) Third Edition.

Department	Electronics Engineering	Major	In	Industrial Electronics & Control				&
Course Name	Digital Systems Design	Course Code	ELCC 328			}		
D		Credit Hours		4		СТН		5
Prerequisites		CRH L 3 P 2				2	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

This course gives trainees the fundamentals of the digital systems. Their different architectures and their use within electronic system design. Digital Logic Design with VHDL as well as Digital Signal Processing DSP will be studied. Interfacing Digital Logic to the Real World (A/D Conversion, D/A Conversion) will be emphasis.

Topics:

- Introduction to Programmable Logic
- Electronic Systems Design
- PCB Design
- Design Languages
- Digital Logic Design
- Digital Logic Design with VHDL
- Interfacing Digital Logic to the Real World
- Testing the Electronic System
- System-Level Design

Experiments: If applicable, it will support the course topics

- Charles H. Roth, Jr. and Lizy Kurian J., Digital Systems Design Using VHDL, , 2ndEdition, Thomson Learning ISBN : ISBN: 10: 0-534-38462-5 ISBN: 13: 978-0-534-38462-3
- Ian Grout, Digital Systems Design with FPGAs and CPLDs, 2008, Elsevier Ltd. ISBN-13: 978-0-7506-8397-5
- K. C. Chang, Digital Systems Design With VHDL And Synthesis: An Integrated Approach, May 1999, Wiley-IEEE Computer Society Press, ISBN: 978-0-7695-0023-2

	Detailed of Theoretical Contents					
No.	Contents	Hours				
1	Review of Logic Design Fundamentals	4				
	Combinational Logic, Boolean Algebra and Algebraic Simplification, Karnaugh Maps,					
	Designing with NAND and NOR Gates, Flip-Flops and Latches, Mealy Sequential					
	Circuit Design, Moore Sequential Circuit Design, Equivalent States and Reduction of					
	State Tables, Sequential Circuit Timing, Tristate Logic and Busses					
2	Introduction to VHDL	4				
	Computer-Aided Design, Hardware Description Languages, VHDL Description of					
	Combinational Circuits, VHDL Modules, Sequential Statements and VHDL Processes,					
	Modeling Flip-Flops Using VHDL Processes, Processes Using Wait Statements, Two					
	Types of VHDL Delays: Transport and Inertial Delays, Compilation, Simulation, and					
	Synthesis of VHDL Code, VHDL Data Types and Operators, Simple Synthesis					
	Examples, VHDL Models for Multiplexers, VHDL Libraries, Modeling Registers and					
	Counters Using VHDL Processes, Behavioral and Structural VHDL, Variables, Signals,					
	and Constants, Arrays, Loops in VHDL					
3	Programmable Logic Devices	5				
	Brief Overview of Programmable Logic Devices, Simple Programmable Logic Devices					

	(SPLDs); Complex Programmable Logic Devices (CPLDs), Field-Programmable Gate					
	Arrays (FPGAs)	_				
4	Design Examples	5				
	BCD to 7-Segment Display Decoder, A BCD Adder, Bit Adders, Traffic Light					
	Controller, State Graphs for Control Circuits, Scoreboard and Controller,					
	Synchronization and Debouncing, A Shift-and-Add Multiplier, Array Multiplier, A					
	Signed Integer/Fraction Multiplier, Keypad Scanner, Binary Dividers					
5	SM Charts and Microprogramming	5				
	State Machine Charts, Derivation of SM Charts, Realization of SM Charts,					
	Implementation of the Dice Game, Microprogramming, Linked State Machines					
6	Designing with Field Programmable Gate Arrays	5				
	Implementing Functions in FPGAs, Implementing Functions Using Shannon's					
	Decomposition, Array Chains in FPGAs, Cascade Chains in FPGAs, Examples of					
	Logic Blocks in Commercial FPGAs, Dedicated Memory in FPGAs, Dedicated					
	Multipliers in FPGAs, Cost of Programmability, FPGAs and One-Hot State					
	Assignment, FPGA Capacity: Maximum Gates Versus Usable Gates, Design					
	Translation (Synthesis), Mapping, Placement, and Routing					
7	Floating-Point Arithmetic	6				
	Representation of Floating-Point Numbers, Floating-Point Multiplication, Floating-					
	Point Addition, Other Floating-Point Operations					
8	Additional Topics in VHDL	6				
	VHDL Functions, VHDL Procedures, Attributes, Creating Overloaded Operators,					
	Multi-Valued Logic and Signal Resolution, The IEEE 9-Valued Logic System, SRAM					
	Model Using IEEE 1164, Model for SRAM Read/Write System 410, Generics 413,					
	Named Association 414, Generate Statements 415, Files and TEXTIO					
9	Hardware Testing and Design for Testability	6				
	Testing Combinational Logic 468, Testing Sequential Logic 473, Scan Testing 476,					
	Boundary Scan 479, Built-In Self-Test					
10	Final Assessment.					
	• Ian Grout, Digital Systems Design with FPGAs and CPLDs. 2008. Else					
	13: 978-0-7506-8397-5					
Те	xtbook • Harles H. Roth, Jr. and Lizy Kurian J. Digital Systems Design Usi	ng VHDL 2nd				
	Edition, Thomson Learning ISBN : ISBN: 10: 0-534-38462-5 ISBN:	13: 978-0-534-				
	38462-3	-				

No.	Contents	Hours
1.	Introduction and VHDL Basics	4
2.	Combinational Logic	4
3.	The Process Statement	2
4.	Sequential Logic	4
5.	State Machines	2
6.	Miscellaneous topics with VHDL	4
7.	Test benches with VHDL	4
8.	Advanced Testing with VHDL	4
9.	VHDL for Modeling	2
10.	Final Assessment.	2

	Toythook	 Pong P. Chu, FPGA Prototyping by Verilog examples Xilinx SpartanTM-3 ,2008 Wiley, ISBN 978-0-470-18532-2
• Douglas L. Perry, VHDL: Programming by Example, 2002, 4th Edition McGraw- Hill, DOI: 10.1036/0071409548	Textbook	• Douglas L. Perry, VHDL: Programming by Example, 2002, 4th Edition McGraw- Hill, DOI: 10.1036/0071409548

	 Ian Grout, Digital Systems Design with FPGAs and CPLDs, 2008, Elsevier Ltd. ISBN-13: 978-0-7506-8397-5 Harles H. Roth, Jr. and Lizy Kurian J., Digital Systems Design Using VHDL, , 2nd Edition, Thomson Learning ISBN : ISBN: 10: 0-534-38462-5 ISBN: 13: 978-0.524 28462 2
Textbooks	0-354-36402-3
	• Pong P. Chu, FPGA Prototyping by Verilog examples Xilinx Spartan1M-3,2008
	Wiley, ISBN 978-0-470-18532-2
	• Douglas L. Perry, VHDL: Programming by Example, 2002, 4th Edition McGraw-
	Hill, DOI: 10.1036/0071409548

Department	Electronics Engineering	Major	In	Industrial Electronics & Control				&
Course Name	Industrial Process Control	Course Code		ELCC 432				
D		Credit Hours	3			СТН		4
Prerequisites	ELCC 331	CRH	L	2	Р	2	Т	0
CRH: C	T: Tutorial	CTH: 0	Conta	ct Ho	urs			

The objective of this course is to teach the student how to derive a mathematical model of a physical system, evaluate process performance, and improve performance by appropriate feedback control schemes. After this course, students are expected to know how to analyze the performance of control systems and design feedback controllers to meet the required performance system specifications. **Topics :**

- Introduction to Process Control and feedback Control
- Laplace Transformation: Properties of Laplace transform, Inverse of Laplace transform
- Solving Differential equations using Laplace transform
- Mathematical Modeling of Process Control (Level Tank of first Order)
- Dynamic Response of First Order Process, Linearization of Nonlinear First order Process
- Dynamic Behavior of Second-Order Process
- Multicapacity Processes as Second Order Processes (Noninteracting)
- Multicapacity Processes as Second Order Processes (Interacting)
- Industrial Controller (On/Off Proportional Mode), (Integral-Derivative Mode)
- Final Control Elements (Control Valves)
- Measuring Elements (transducers)
- Dynamic behavior of Feedback Controlled Process
- Closed-loop responses of simple Control system (Proportional-Integral-Derivative Controller)
- Stability of Closed-Loop Control Systems (Routh Criterion)
- Process Reaction Tuning, Application of Process Reaction Tuning
- Introduction to State-Space
- Controlability, Observability
- Advanced Forms of PID Algorithms, Simulating Noise and Process Disturbances
- Filter Action and Filter Time Constant
- Estimating Correct Filter Time Constant in DCS or PLC

Experiments: If applicable, it will support the course topics

- Steven E LeBlanc; Donald R Coughanowr, Process systems analysis and control, McGraw-Hill Higher Education, 2009
- P.C. Chau, Process Control: A First Course with MATLAB, Cambridge Publishers (2002).

No.	Contents	Hours
1	Introduction	1
2	Introduction to Process Control and feedback Control: History of Automatic	3
	Control, Two Examples of the Use of Feedback, Control Engineering Fractice,	

	Examples	of Modern Control Systems Automatic Assembly and Robots. The Future					
	Evolution	of Control Systems, Laplace Transformation: Introduction to the Laplace					
	Method L	anlace Integral Table Lanlace Transform Rules					
3	Properties	s of Lanlace transform: Heaviside's Method Partial Fraction Theory	2				
5	Heaviside'	s Coverun Method Heaviside Sten and Dirac Delta	<u>L</u>				
	Inverse of	Laplace transform: The Laplace Transformation. The Linearity Property of					
	the Laplac	e Transformation. Inverting using completion of the square.					
4	Solving	Differential equations using Laplace transform : Introduction and	4				
-	Backgrour	d Information. Properties of the Laplace Transform. Inverse Laplace	-				
	Transform	, Solving a Differential Equation using Laplace (Level Tank of first Order)					
5	Dynamic	Response of First Order Process: First-Order Linear System Transient	2				
C	Response,	The Homogeneous Response and the First-Order Time Constant, The	-				
	Characteri	stic Response of First-Order System Linearization of Nonlinear First Order					
	Process						
6	Dynamic	Behavior of Second-Order Process: for a stochastic target problem,	2				
	Multicapa	city Processes as Second Order Processes (Noninteracting): First-Order					
	Linear Sys	stem Transient Response, The Homogeneous Response and the First-Order					
	Time Cons	stant, The Characteristic Response of First-Order Systems.					
7	Multicapa	city Processes as Second Order Processes (Interacting) Industrial	2				
	Controller (On/Off - Proportional Mode): Continuous Process Control, Closed-Loop						
	Control.						
8	Industrial	Controller (Integral-Derivative Mode), Proportional Integral Derivative	2				
	Control, R						
•	The Final	Control Element, Electric Motor, Relay, Pneumatic actuator	•				
9	Dynamic	behavior of Feedback Controlled Process	2				
10	Closed-loo	2					
11	Closed-loo	op responses of simple Control system (Proportional-Integral-Derivative	2				
	Controller): Programming PID Algorithm, Proportional VI, Integral VI, Derivative VI.					
12	Process R	eaction Tuning: Good Gain method, Ziegler-Nichols' closed loop method,	2				
	The Ziegle	er-Nichols' PID tuning procedure,					
13	Introduct	ion to State-Space: The State Space Model and Differential Equations, State	2				
	Space Var						
14	Controlla	bility, observability: Observability of Discrete Systems, Observability of	2				
	Continuous Systems, Controllability of Discrete Systems, Controllability of Continuous						
	Systems, Additional Controllability/Observability Topics						
15							
15	Final asse	ssment	2				
		• Steven E LeBlanc; Donald R Coughanowr, Process systems analys	is and control,				
То	vthook						
16	ALDOOK	• P.C. Chau, Process Control: A First Course With MATLAB, Cambra	idge Publishers				
(2002).							

No.	Contents	Hours
1.	Introduction	2
2.	Manual Control valve	2
3.	Solenoid Valves	4
4.	Motorized control Valve	2
5.	On / Off Level Control Using electrodes	2
6.	Manual Input calibration	2

7.	Process Controller C	4		
8.	On / Off Process Co	On / Off Process Controller		
9.	P-Controller	2		
10.	PI-Controller	2		
11.	PD-Controller	2		
12.	PID-Controller		2	
13.	Auto tuning of PID-Controller		2	
14.	Final assessment	2		
Textbook • Cheng Siong Chin, COMPUTER AIDED CONTROL SYSTEMS DESIGN, Practica Applications Using MATLAB® and Simulink, 2013 by Taylor & Francis Group, LLC.				

Textbooks	 Steven E LeBlanc; Donald R Coughanowr, Process systems analysis and control, McGraw-Hill Higher Education, 2009 P.C. Chau, Process Control: A First Course With MATLAB, Cambridge Publishers (2002).
	• Cheng Siong Chin, COMPUTER AIDED CONTROL SYSTEMS DESIGN, Practical Applications Using MATLAB® and Simulink, 2013 by Taylor & Francis Group, LLC.

Department	Electronics Engineering	Major	Industrial Electronics & Control				&	
Course Name	Power Electronics	Course Code		ELCC 452				
D	EL CC 242	Credit Hours	4			СТН		6
Prerequisites	ELCC 342	CRH	L	3	Р	2	Т	1
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

This course examines the application of electronics to energy conversion and control. Topics covered include: modeling, analysis, and control techniques; design of power circuits including inverters, rectifiers, AC-AC and DC-DC converters; analysis and design of magnetic components and characteristics of power semiconductor devices. Numerous application examples will be presented such as Aerospace, Railway, Electrical Automotive, Solar, Lighting, Power supplies, both theoretical and practical laboratory simulations.

Topics :

- Converter classification and electronic switches.
- Power computations.
- Half-wave rectifiers: the basics of analysis
- Full-wave and 3-phase rectifiers converting AC to DC
- AC to AC converters
- DC to DC converters
- DC power supplies
- Inverters: Converters AC to DC
- Resonant converters

Experiments: If applicable, it will support the course topics

- Rashid, Muhammad H; Power Electronics Handbook Devices, Circuits, and Applications, Elsevier, 2011
- Moorthi, V. R, Power electronics : devices, circuits and industrial applications, Oxford University Press, 2010

Detailed of Theoretical Contents				
No.	Contents	Hours		
1	Converter classification and electronic switches.	4		
2	Power computations.	8		
3	Half-wave rectifiers: the basics of analysis	8		
4	Full-wave and 3-phase rectifiers converting AC to DC	6		

5	AC to AC	converters	6	
6	DC to DC	converters	8	
7	DC power	supplies	8	
8	Inverters:	Converters AC to DC	8	
9	Resonant o	converters	6	
10	Final Asse	ssment.	2	
Te	xtbook	 Rashid, Muhammad H; Power Electronics Handbook - Devices, Applications, Elsevier, 2011 Moorthi, V. R, Power electronics : devices, circuits and industrial appli University Press, 2010 	Circuits, ications, Ox	and ford

		Detailed of Practical Contents			
No.		Contents	Hours		
1.	Uncontro	4			
2.	Controll	6			
3.	AC/AC	4			
4.	DC/DC converters				
5.	DC/AC converters and AC motor drive				
6.	Final Assessment.				
 Rashid, Muhammad H; Power Electronics Handbook - Devices, Circuits, and Application Elsevier, 2011 Moorthi, V. R, Power electronics : devices, circuits and industrial applications, Oxfor University Press, 2010 G K, Dubey, Power Semiconductor Controlled Drives, Prentice- Hall 1989 					

	 Rashid, Muhammad H; Power Electronics Handbook - Devices, Circuits, and Applications, Elsevier, 2011 Moorthi, V. R, Power electronics : devices, circuits and industrial applications, Oxford University Press, 2010
Textbooks	 Rashid, Muhammad H; Power Electronics Handbook - Devices, Circuits, and Applications, Elsevier, 2011 Moorthi, V. R, Power electronics : devices, circuits and industrial applications, Oxford University Press, 2010 G.K. Dubey, Power Semiconductor Controlled Drives, Prentice- Hall, 1989

Department	Electronics Engineering	Major	Industrial Electronics & Control				&	
Course Name	Embedded Systems	Course Code		ELCC 329				
D · · ·	ELCC 228	Credit Hours	3			СТН		5
Prerequisites	ELCC 328	CRH	L	2	Р	2	Т	1
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours							

Embedded systems are involved in almost every facet and modern life. Cell phones, pagers, PDAs answering machines, microwaves ovens, televisions, video games consoles, GPS devices, networks routers...

Late model cars may contain as many as 65 embedded microprocessors, controlling such tasks as antilock braking, engine control, audio system control.

In this course the fundamentals of embedded systems hardware and firmware design will be explored. Issues such us embedded processor selection, hardware- firmware partitioning, logic circuit design, circuit layout, circuit debugging, developing tools, firmware architecture, firmware design and firmware debugging.

Topics :

- Converter classification and electronic switches.
- General-purpose processors: Software
- Standard single-purpose processors: Peripherals
- Custom single-purpose processors: Hardware
- Memories
- Interfacing

Experiments: If applicable, it will support the course topics

- Ali Mazidi, Janice Gillispie Mazidi., "The 8051 Microcontroller and Embedded systems", Person Education, 2nd Edition, 2004.
- Dorf R.C., Bishop R.H. Modern control systems, Addison Wesley, 1995.

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction to the Course and Embedded Systems	6
	Embedded systems overview, Design challenge – optimizing design metrics, Embedded	
	processor technology, IC technology, Design technology,	
2	General-purpose processors: Software. Basic architecture, Operation, Programmer's	8
	view, Microcontrollers, Selecting a microprocessor	
		-
3	Standard single-purpose processors: Peripherals	8
	Timers, counters, and watchdog timers, UART (Universal Asynchronous	
	Receiver/Transmitter), Pulse width modulator, LCD controller, Keypad controller,	
	Stepper motor controller.	
4	Custom single-purpose processors: Hardware Combinational logic design,	8
	Sequential logic design, Custom single-purpose processor design	
5	Memories: Read-only memory - ROM, Read-write memory - RAM, Composing	8
	memories.	

6	Interfacin	g: Timing diagrams, Hardware protocol basics, Interfacing with a general-	8
	purpose processor, Arbitration, Multi-level bus architectures.		
7	7 Final Assessment.		2
Te	extbook	 Marwedel, Peter, Embedded System Design : Embedded Systems, Found Physical Systems, and the Internet of Things, Springer International Public Elecia White, Making Embedded Systems: Design Patterns for Great Sof 2011 Frank Vahid, Tony Givargis, Embedded System Design: a unified has introduction, Wiley , 2001 	lations of Cyber- ishing 2018 ftware, O'Reilly, ardware/software

	Detailed of Practical Contents		
No.	Contents	Hours	
1.	Assembly Microprocessor Programming 4		
2.	AVR/ARM programming	6	
3.	DSP algorithms programming	6	
4.	Custom single-purpose processor design6		
5.	Memory programming and Testing 4		
6.	Interfacing of LCD display to Microcontroller 4		
7.	Final Assessment.2		
Tex	tbook • Frank Vahid, Tony Givargis, Embedded System Design: a unified h introduction, Wiley, 2001.	ardware/software	

Textbooks	 Marwedel, Peter, Embedded System Design : Embedded Systems, Foundations of Cyber-Physical Systems, and the Internet of Things, Springer International Publishing 2018 Elecia White, Making Embedded Systems: Design Patterns for Great Software, O'Reilly, 2011 Frank Vahid, Tony Givargis, Embedded System Design: a unified hardware/software introduction, Wiley , 2001
	• Frank Vahid, Tony Givargis, Embedded System Design: a unified hardware/software introduction, Wiley, 2001.

Department	Electronics Engineering	Major	In	dustr	ial E Cor	lectro trol	onics	&
Course Name	Electro Mechanical Systems	Course Code]	ELC	C 427	7	
D		Credit Hours	Irs 2 CTH			3		
Prerequisites	ELCC 333	CRH	L	2	Р	0	Т	1
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Electro Mechanical Systems unit of study introduces the trainees to electrical actuators, electrohydraulic systems, Analysis of common power electronic schemes required for electromagnetic motion devices. Modeling and simulation of electrically driven magnetic motion systems and drive electronics using MATLAB and Simulink. Equations of motion governing DC and AC motors. Performance characteristics of various DC and AC Motor Designs simulated using MATLAB and Simulink. **Topics :**

- Introduction to Electromechanical Systems
- Analysis of Electromechanical Systems
- Review of Electromagnetism
- Review of Classical Mechanics
- Introduction to Power Electronics
- Modeling and Application of Op. Amps., Power Amplifiers, and Power Converters
- DC Electric Machines and Motor Devices
- Modeling and Simulation of DC Electric Motors
- DC Electric Machines with Power Electronics
- Induction Machines (some advanced topics)
- Torque Characteristics
- Simulation of AC Induction Motors using MATLAB and Simulink
- Synchronous Machines (advanced topic)
- Digital PID Control Laws and application involving Servo system with Permanent Magnet DC Motor

Experiments: If applicable, it will support the course topics

References :

- S.E. Lyshevski, Electromechanical Systems and Devices, CRC Press, 2008
- S.E. Lyshevski, Engineering and Scientific Computations using MATLAB, Wiley, 2003
- C.W. de Silva, Mechatronics: an Integrated Approach, CRC Press, 2004.

Detailed of Theoretical Contents		
No.	Contents	Hours
1	Introduction to Electromechanical Systems:	2
2	Analysis of Electromechanical Systems	4

3	Review of Electromagnetism: Electromagnetic (EM) Theory, Maxwell's Equations,	4			
	Light is a traveling EM wave, Electromagnetic Radiation, Sources of EM Energy.				
4	Review of Classical Mechanics	4			
5	Introduction to Power Electronics: Power Electronic Devices, Power Electronic Circuits	2			
c	and Controls, Applications and Systems Considerations				
6	Modeling and Application of Op. Amps., Power Amplifiers, and Power Converters	4			
7	DC Electric Machines and Motor Devices: classification of electrical machines, basic	4			
	features of electrical machines, basic principal of operation.				
8	Modeling and Simulation of DC Electric Motors: introduction, the mathematical model	4			
	of the DC motor, simulation of the DC motor.				
9	DC Electric Machines with Power Electronics	4			
10	Induction Machines (some advanced topics)	2			
11	Torque Characteristics: Induction Machine Vector Control System Description,	4			
	Evaluation Board Selection, Signal Conditioning.				
12	Simulation of AC Induction Motors using MATLAB and Simulink	4			
13	Synchronous Machines (advanced topic): Synchronous condensers, Superconducting	4			
	synchronous condensers, Synchronous machine models, State estimation applied to				
	synchronous generators				
14	Final assessment	2			
 S.E. Lyshevski, Electromechanical Systems and Devices, CRC Press, 2008. H.D. Chai, Electromechanical Motion Devices, Prentice Hall, 1998. 					

	٠	S.E. Lyshevski, Electromechanical Systems and Devices, CRC Press, 2008.
Textbooks	•	H.D. Chai, Electromechanical Motion Devices, Prentice Hall, 1998.

Department	Electronics Engineering	Major	In	dustr	ial F Co	Electro ntrol	onics	: &
Course Name	Electric Drives	Course Code			ELC	C434		
н		Credit Hours 3		СТН		5		
Prerequisites	ELCC452	CRH	L	2	Р	2	tronics & ol 34 гн 5 2 T 1	1
CRH: C	redit Hours L: Lecture P: Practical	T: Tutorial	CTH:	Conta	ct Ho	urs		

Motion control in industrial, commercial and transportation systems is carried out using electrical drives. This course provides students with the working knowledge of various components of an electrical drive system and their control. After completion of this course, students are expected to select and size electrical drives for any given application in an efficient manner and should be able to perform design of different drive components. The topics covered are: characteristics and sizing of power semiconductor controlled electric drives; DC motor drives: speed and torque control; induction motor drives: voltage control and variable frequency control; synchronous motor drives: open-loop, closed-loop variable frequency control; brushless DC drives; drives application examples

Topics:

- Introduction: Power devices and switching motor drive.
- Modeling of DC machine.
- Phase controlled DC motor drive.
- Chopper controlled DC motor drive.
- Polyphase induction machine modeling.
- Phase controlled induction motor drive.
- Frequency controlled induction motor drive.
- Vector controlled induction motor drive.
- Permanent-Magnet Synchronous and brushless DC motor drive.

Experiments: If applicable, it will support the course topics

References :

- R Krishnan, "Electric Motor Drives Modeling, Analysis and Control", Prentice Hall, Last Edition.
- Electric Drives, N. Mohan, MNPERE, 2007 edition.
- G.K. Dubey, Fundamentals of Electric Drives, Narose Publishing House, second edition, 2002
- David Finney, Variable Frequency AC motor Drive Systems, Peter Peregrinus Ltd, London, 1988.

Detailed of Theoretical Contents		
No.	Contents	Hours
1	Introduction: Power devices and switching motor drive.	3

2	Modeling of DC machine. 6		
3	Phase controlled DC motor drive. 4		
4	Chopper controlled DC motor drive. 6		
5	Polyphase induction machine modeling.	6	
6	Phase controlled induction motor drive. 4		
7	Frequency controlled induction motor drive. 5		
8	Vector controlled induction motor drive. 6		
9	Permanent-Magnet Synchronous and brushless DC motor drive. 6		
10) Final Assessment.		
Textbook • R Krishnan, "Electric Motor Drives - Modeling, Analysis and Control", Prentice Hall Last Edition.		Prentice Hall,	

	Detailed of Practical Contents				
No.	Contents	Hours			
1.	Phase controlled DC machine.	6			
2.	DC machine drive:	6			
	-Buck converter				
	- H converter				
3.	Phase controlled Induction machine	4			
4.	Induction machine drive: - DC/AC converter - V/f control strategy - Vectorial control - Direct Torque Control DTC - Active Breaking	12			
5.	5. Final Assessment.				
Textbook • R Krishnan, "Electric Motor Drives - Modeling, Analysis and Control", Prentice Edition.		rentice Hall, Last			

R Krishnan, "Electric Motor Drives - Modeling, Analysis and Control", Prentice Hall, Last Edition.

Department	Electronics Engineering	Major	Industrial Electronics & Control			&		
Course Name	Robotics	Course Code	ELCC 464					
D		Credit Hours		3		СТН		5
Prerequisites	ELCC 322	CRH	L	2	Р	2	Т	1
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Design of robotics systems that combine embedded hardware, software, mechanical subsystems, and fundamental algorithms for sensing and control to expose students to basic concepts in robotics and current state of the art. Lecture closely tied to design laboratory where students work in teams to construct series of subsystems leading to final project.

Topics:

- Overview of Robots
- Gripper Design
- Position Velocity Sensors
- Actuators
- Robot Control
- Robot Coordinate Systems
- Robots Kinematics
- Differential Motion and the Jacobian
- Task Space Trajectory Planning
- Joint space Trajectory Planning
- Robots Dynamics
- Robots Programming Languages
- Computer Vision
- Experiments: If applicable, it will support the course topics

References :

- Mordechai Ben-Ari, Francesco Mondada, Elements of Robotics, Springer, 2018
- Lepuschitz, Wilfried, Robotics in education : latest results and developments, Springer, 2018
- T. Braunl, Embedded Robotics: Mobile Robot Design and Applications with Embedded Systems, 2006.

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction	2
2	Overview of Robots	2
3	Gripper Design	2
4	Position Velocity Sensors	2
5	Actuators	2
6	Robot Control	4
7	Robot Coordinate Systems	2

8	Robots Ki	6		
9	Differentia	Differential Motion and the Jacobian		
10	Task Space Trajectory Planning			
11	Joint space	e Trajectory Planning	4	
12	Robots Dynamics 4			
13	Robots Programming Languages 4			
14	Computer	4		
15	Final assessment			
 Mordechai Ben-Ari, Francesco Mondada, Elements of Robotics, Springer, 2018 Lepuschitz, Wilfried, Robotics in education : latest results and developments, Springer, 2018 T. Braunl, Embedded Robotics: Mobile Robot Design and Applications with Embedded Systems, 2006. 				

	Detailed of Practical Contents			
No.	Contents	Hours		
1.	Introduction	2		
2.	Interface to and process data from sensors	2		
3.	Interface to and process commands to actuators	2		
4.	Design embedded controllers with sensors/actuators	2		
5.	Inverse kinematics of robotic mechanisms	2		
6.	Control of robotic mechanisms	2		
7.	Robot path planning algorithms 4			
8.	Robot system architecture organization 2			
9.	Robotics related platforms and tools 4			
10.	Robotic and embedded system standards 2			
11.	Design robot system for given task goal 2			
12.	Design H/W and S/W for robotic embedded system 2			
13.	. Implement real-time event-based robot control 2			
14.	14.Final Assessment2			
Tex	Textbook • Lepuschitz, Wilfried, Robotics in education : latest results and developments, Springer, 2018			

•	F. Martin, Robotics Explorations: A Hands-on introduction to Engineering, Prentice-Hall 2001.

	 Mordechai Ben-Ari, Francesco Mondada, Elements of Robotics, Springer, 2018 Lepuschitz, Wilfried, Robotics in education : latest results and developments, Springer, 2018 T. Braunl, Embedded Robotics: Mobile Robot Design and Applications with Embedded Systems, 2006
Textbooks	 Lepuschitz, Wilfried, Robotics in education : latest results and developments, Springer, 2018 F. Martin, Robotics Explorations: A Hands-on introduction to Engineering, Prentice-Hall 2001.

Department	Electronics Engineering	Major	Industrial Electronics & Control			&		
Course Name	Digital Control Systems	Course Code	ELCC 437					
		Credit Hours		3		СТН		5
Prerequisites	ELCC 432	CRH	L	2	Р	2	Т	1
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

The course introduces the fundamental concepts, principles and applications of the digital control system. The topics cover modern control design techniques, including, Discrete systems dynamics, sampled-data systems, Z-transform, digital transfer functions, state space models and digital controllers design. A number of chosen real problems are solved to illustrate the concepts clearly.

Topics:

- Overview of Digital Control System
- Discrete-Time Systems and the z-Transform
- Sampling and reconstruction
- Open-Loop Discrete-Time Systems
- Closed-loop systems
- system time-response Characteristics, System Time Response, System Characteristic Equation,
- stability analysis techniques
- Digital Controller design
- pole-assignment design and state estimation
- system identification of discrete-time systems
- linear quadratic optimal Control
- Case studies

Experiments: If applicable, it will support the course topics

References :

- Charles L. Phillips H. Troy Nagle Aranya Chakraborttym, digital Control System analysis and design, Fourth Edition 2015 Pearson Education Limited, Edinburgh Gate Harlow Essex, England
- Anastasia Veloni Nikolaos I. Miridakis, Digital Control Systems Theoretical Problems and Simulation Tools, CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW
- M. Sami Fadali and Antonio Visioli, Digital Control Engineering Analysis and Design, Second Edition, Academic Press 2013 Elsevier Inc.

Software:

• MATLAB: Control and Simulink Tool Boxes, Math Works Inc.

No.	Contents	Hours
1	Overview of Digital Control System The Control Problem examples, Servomotor	3
	System Model, Antenna Pointing System, Robotic Control System, Temperature	
	Control System, Single-Machine Infinite Bus Power System	
2	Discrete-Time Systems and the z-Transform Discrete-Time Systems, Transform	5
	Methods, Properties of the z-Transform, Addition and Subtraction, Multiplication by a	
	Constant, Real Translation, Complex Translation, Initial Value, Final Value, Finding z-	
	Transforms, Solution of Difference Equations, The Inverse z-Transform, Power Series	

	Method, Partial-Fraction Expansion Method, inversion-Formula Method, Discrete			
	Convolution, Simulation Diagrams and Flow Graphs, State Variables, Other State-			
	Variable Formulations, Transfer Functions, Solutions of the State Equations, Recursive			
	Solution, z-Transform Method, Numerical Method via Digital Computer, Properties of			
	the State Transition Matrix, Linear Time-Varying Systems			
3	Sampling and reconstruction Sampled-Data Control Systems, The Ideal Sampler,	4		
-	Data Reconstruction, Zero-Order Hold, First-Order Hold, Fractional-Order Holds	-		
4	Open-Loop Discrete-Time Systems the Pulse Transfer Function, Open-Loop Systems	4		
	Containing Digital Filters, The Modified z-Transform Systems with Time Delays,			
	Nonsynchronous Sampling, State-Variable Models, Review of Continuous-Time State			
	Variables, Discrete-Time State Equations, Practical Calculations			
5	Closed-loop systems Derivation procedure, State-Variable Models,	3		
6	System time-response Characteristics System Time Response, System Characteristic	3		
_	Equation, Mapping the s-Plane into the z-Plane, Steady-State Accuracy,	_		
7	stability analysis techniques Stability concept, Bilinear Transformation, The Routh-	6		
	Hurwitz Criterion, Jury's Stability Test, Root Locus, The Nyquist Criterion, The Bode			
	Diagram, Interpretation of the Frequency Response, Closed-Loop Frequency Response			
8	Digital Controller Design Control System Specifications, Steady-State Accuracy,	6		
_	Transient Response, Relative Stability, Sensitivity, Disturbance Rejection, Control	-		
	Effort, Compensation, Phase-Lag Compensation, Phase lead compensation, Phase-Lead			
	Design Procedure. Lag-Lead Compensation. Integration and Differentiation Filters. PID			
	Controllers, PID Controller Design, Design by Root Locus,			
	Control System Specifications, Steady-State Accuracy, Transient Response, Relative			
	Stability, Sensitivity, Disturbance Rejection, Control Effort, Compensation, Phase-Lag			
	Compensation, Phase lead compensation, Phase-Lead Design Procedure, Lag-Lead			
	Compensation, Integration and Differentiation Filters, PID Controllers, PID Controller			
	Design, Design by Root Locus,			
9	pole-assignment design and state estimation Pole Assignment, State Estimation,	6		
_	Observer Model, Errors in Estimation, Error Dynamics, Controller Transfer Function,	-		
	Closed-Loop Characteristic Equation, Closed-Loop State Equations, Reduced-Order			
	Observers, Current Observers, Controllability and Observability, Systems with Inputs			
10	0 Case studies Servomotor System, System Model, Design, Environmental Chamber 6			
	Control System, Temperature Control System, Aircraft Landing System, Plant Model,			
	Design, Neonatal Fractional Inspired Oxygen, Plant Transfer Function, Taube's PID			
	Controller, Topology Identification in Electric Power System Models.			
11	Final Assessment.	2		
	Charles I Phillins H Troy Nagle and Aranya Chakraharttum Digital	Control System		
Те	xthook Analysis and Design Fourth Edition 2015 Pearson Education Limited	Edinburgh Gate		
Harlow Essey England		Luniourgii Gate		
	Harlow Essex, Eligiand.			

Detailed of Practical Contents		
No.	Contents	Hours
1.	Discrete-time simulation with MATLAB Simulink.	2
2.	Time-domain controller simulation	2
3.	Frequency-domain controller simulation.	2
4.	Sampling, aliasing, zero-order hold	2

5.	Discrete-time plant modeling 2		
6.	Filter structure and finite-precision effects.	4	
7.	Frequency-response controller design. 4		
8.	Numeric optimal PID controller design. 4		
9.	State-feedback controller design. 4		
10.	State estimation and control design. 2		
11.	Digital Control of a DC Motor 2		
12.	2. Final Assessment. 2		
Tex	Textbook• Cheng Siong Chin, COMPUTER AIDED CONTROL SYSTEMS DESIGN, Practical Applications Using MATLAB® and Simulink, 2013 by Taylor & Francis Group, LLC.		

Textbooks	• Charles L. Phillips H. Troy Nagle and Aranya Chakraborttym, Digital Control System Analysis and Design, Fourth Edition 2015 Pearson Education Limited, Edinburgh Gate Harlow Essex, England.
	• Cheng Siong Chin, COMPUTER AIDED CONTROL SYSTEMS DESIGN, Practical Applications Using MATLAB® and Simulink, 2013 by Taylor & Francis Group, LLC.

Department	Electronics Technology	Major	Industrial Electronics & Control			
Course Name	Renewable energy technologies	Course Code	ELCC411			
D		Credit Hours	2	СТН	3	
Prerequisites	ELCC341	CRH	L 2 1	P 0	T 1	
CRH: C	redit Hours L: Lecture P: Practical	T: Tutorial	CTH: Contact I	lours		

This course discusses the use of solar energy (thermal and photovoltaic), wind, geothermal, as well as energy heat transfer. The potential of using renewable energy technologies to the extent possible, replacement for conventional technologies, and the possibility of combining renewable and nonrenewable energy technologies in hybrid systems.

In the end of the course, students will be able to:

- describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.
- Explain the technological basis for harnessing renewable energy sources.
- Recognize the effects that current energy systems based on fossil fuels have over the environment and the society

Topics:

- Principles of renewable energy
- Photovoltaic Cells
- Power from the wind
- Heat transfer
- Geothermal Energy

Experiments: If applicable, it will support the course topics **References :**

		Detailed of Theoretical Contents			
No.		Contents	Hours		
1	Principles Scientific Problems	of renewable energy: Energy and sustainable development, Fundamentals, principles of renewable energy, Technical implications, Social implications,	8		
2	2 Photovoltaic Cells: Crystal Structure, Cell Physics, Energy Bands, Electrons and Their Energy, Direct and Indirect, Band-Gap Materials, Doping, Generation and Recombination, The p–n Junction, Solar Cell Equations, Characterization, Efficiency, Cell Applications, Problems				
3	Power from the wind: Turbine types and terms, Linear momentum and basic theory, Blade element theory, Characteristics of the wind, Power extraction by a turbine, Electricity generation, Social and environmental considerations, Problems				
4	Heat transfer: Heat circuit analysis and terminology, Conduction, Convection, 10 Radiative heat transfer. Properties of 'transparent' materials. Heat transfer. Problems. 10				
5	5Geothermal Energy: Geophysics, Dry rock and hot aquifer analysis, Harnessing10Geothermal Resources, Social and environmental aspects, Problems10				
6	Final Asse	ssment	2		
Te	 D. Chandrasekharam and J. Bundschuh Hb: Spon Press. V. Bentivegna, P.S. Brandon and P. Lombardi Hb: Spon Press. 				

Department	Electronics Engineering	Major	Industrial Electronics & Control				&
Course Name	Digital Communication Systems	Course Code		ELCC473			
	EL CC225	Credit Hours CRH	з 3 стн				5
Prerequisites	ELCU325		L	2	Р	2	Т
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours							

This course covers the techniques of modern digital communication systems. Special emphasis is placed on the Review of the digital communication, Coding for discrete sources, Quantization, Source and channel waveforms, modulation, and demodulation (PSK, FSK, ASK, QAM) Introduction to Wireless communication.

Students are expected to demonstrate the ability to:

- Understand basic components of digital communication systems.
- Design optimum receivers for digital modulation techniques.
- Analyze the error performance of digital modulation techniques.

Design digital communication systems under given power, spectral and error performance constrains.

Topics:

- Introduction to digital communication
- Channel Coding
- Digital Baseband Transmission
- Digital Modulations of the Sinusoidal Carrier
- Properties of Communication Channels
- Synchronization in Digital Communication Systems
- Multiple Access Techniques

Experiments: If applicable, it will support the course topics

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction to digital communication: Standardized interfaces and layering,	4
	Communication sources, Source coding, Communication channels, Channel encoding	
	(modulation), Error correction, Digital interface, Network aspects of the digital	
	interface	
2	Channel Coding: Classification of Codes, Hard- and Soft-Decision Decoding, Coding	6
	Gain, Hamming Codes, The Iterated Code, Polynomial Codes, Code word Generation	
	for the, Polynomial Codes, Cyclic Codes	
3	Digital Baseband Transmission: Shaping of Elementary Signals, Selection of the	6
	Data, Symbol Format, Optimal Synchronous Receiver, Error Probability in the Optimal	
	Receiver for M-PAM Signals, Case Study: Baseband Transmission in Basic Access	
	ISDN Systems	
4	Digital Modulations of the Sinusoidal Carrier: Optimal Synchronous Receiver,	8
	Optimal Asynchronous Receiver, ASK Modulation, Synchronous Receiver for ASK-	
	Modulated Signals, Asynchronous Reception of ASK-Modulated Signals, Error	
	Probability on the Output of the Asynchronous ASK	
5	Properties of Communication Channels: Baseband Equivalent Channel, Telephone	8
	Channel, Basic Elements of the Telephone Network Structure, Telephone Channel	
	Properties, Properties of a Subscriber Loop Channel, Line-of-Sight Radio Channel,	
	Mobile Radio Channel	

6	Synchron	ization in Digital Communication Systems:	6
	Phase-lock	ted loop for continuous signals, Phase-Locked Loop for Sampled Signals,	
	Maximum	Likelihood Carrier Phase Estimation, Practical Carrier Phase	
	Synchroni		
7	Multiple A	Access Techniques: Frequency Division Multiple Access, Time Division	8
	Multiple A		
	CDMA, O		
	Division N		
	Cellular S		
8	Final Asse	ssment.	2
 S. Haykin and M. Moher, Introduction to Analog & Digital Communic John Wiley & Sons, Inc., 2007 M. Pursley, Intorduction to Digital Communications, Prentice-Hall, Er NJ, 2005. Krzysztof Wesolowski, Introduction to digital communication systems, Sons Ltd 2009 			

	Detailed of Practical Contents				
No.	Contents	Hours			
1.	Pulse Amplitude Modulation (PAM) and Demodulation	4			
2.	Pulse Width Modulation (PWM) and Demodulation				
3.	Pulse Position Modulation (PPM) and Demodulation	4			
4.	Pulse Code Modulation (PCM) and demodulation and observe the waveforms	4			
5.	Amplitude Shift Keying (ASK) Modulator and Demodulator 4				
6.	Phase Shift Keying (PSK) Modulator and Demodulator. 2				
7.	Frequency Shift Keying (FSK) Modulator and Demodulator.2				
8.	Time Division Multiplexing				
9.	Data Formatting	4			
10.	Final assessment	2			
 S. Haykin and M. Moher, Introduction to Analog & Digital Communications, 2nd ed., John Wiley & Sons, Inc., 2007 M. Pursley, Intorduction to Digital Communications, Prentice-Hall, Englewood Cliffs, NJ, 2005. Krzysztof Wesolowski, Introduction to digital communication systems, John Wiley & Sons, Ltd 2009 					
	• S. Haykin and M. Moher, Introduction to Analog & Digital Communication, Wiley & Sons, Inc., 2007	s, 2nd ed., John			

Department	Electronics Engin	eering	Major	Industrial Electronics & Control				&	
Course Name	Integrated VLSI Circ	uit Design	Course Code		ELCC442				
D	ELCC 329		Credit Hours	2			СТН		2
Prerequisites			CRH	L	2	Р	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

This is an introductory course, which covers basic theories and techniques of digital VLSI design in CMOS technology. In this course, we will study the fundamental concepts and structures of designing digital VLSI systems include CMOS devices and circuits, standard CMOS fabrication processes, CMOS design rules, static and dynamic logic structures interconnect analysis, CMOS chip layout, simulation and testing, low power techniques, design tools and methodologies, VLSI architecture. The course is designed to give the student an understanding of the different design steps required to carry out a complete digital VLSI (Very-Large-Scale Integration) design in silicon.

Topics:

- Introduction to VLSI Systems.
- CMOS logic, fabrication and layout
- MOS Transistor theory
- Layout Design Rules
- Circuit characterization and performance estimation
- Circuit Simulation
- Combinational and sequential circuit design
- Memory system design
- Design methodology and tools

Experiments: If applicable, it will support the course topics

References:

- Digital Design, 3rd edition by M. Morris Mano.
- Principles of CMOS VLSI design by N H E Weste& K Eshraghian
- Modern VLSI Design: System on Silicon by Wayne Wolf.

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction to VLSI Systems.	2
2	CMOS logic, fabrication and layout	2
3	MOS Transistor theory	2
4	Layout Design Rules	4
5	Circuit characterization and performance estimation	4
6	Circuit Simulation	4
7	Combinational and sequential circuit design	4
8	Memory system design	4

9	Design me	esign methodology and tools		
10	Final Asse	ssment	2	
Te	Textbook • Weste& Harris, CMOS VLSI Design: A Circuits and Systems Perspective Addison Wesley, 2005		pective, 3rd ed,	

Textbooks	• Weste& Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 3rd Wesley, 2005.	ed, Addison
-----------	--	-------------

Industrial Electronic and Control

ELECTIVES 1

Department	Electronics Engineering	Major	Industrial Electronics & Control				&	
Course Name	Artificial Intelligence	Course Code		ELCC 474				
D	EL CC 221	Credit Hours	<mark>; 4 стн</mark>				6	
Prerequisites	ELCC 331	CRH	L	3	Р	2	Т	1
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

This course provides an overview and introduction to the field of Artificial Intelligence. Notions of rational behavior and intelligent agents will be discussed. Major subareas will be covered. The emphasis will be on understanding the fundamental concepts, as well as being able to practically apply the corresponding approaches in solving practical problems and developing useful software applications. Program illustrations in traditional languages such as C and Java and Matlab toolbox will be used. General understanding of major concepts and approaches in knowledge representation, planning, learning, robotics and other AI areas.

Topics:

- Introduction to Artificial Intelligence. Sub-areas.
- Intelligent agents
- Problem solving
- Introduction to knowledge representation
- Planning
- Machine learning
- Artificial neural networks
- Fuzzy Logic control
- ANFIS applications in control systems
- Robotics Applications
- Review of basic LISP constructs: macros, mapping, primitives, LAMBDA definitions, Advanced LISP, programming: structures, lexical and special, variables, generators and encapsulation, procedures, returning multiple values.
- Logic-based TMSs: representing negation and Boolean, constraint propagation.

Experiments: If applicable, it will support the course topics **References** :

• Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th ed. G. Luger, Addison Wesley, 2009

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction to Artificial Intelligence. Sub-areas.	4
2	Intelligent agents	6
3	Problem solving	6
4	Introduction to knowledge representation	6
5	Planning	6
6	Machine learning	8
7	Artificial neural networks	6

8	Fuzzy Log	8				
9	ANFIS app	6				
10	Robotics Applications					
11	Final Assessment					
Те	 Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Edition), Pearson Education Limited 2016 Artificial Intelligence: A Modern Approach (3rd Edition) by Stuart Russe S. Haykin, "Neural Networks: A Comprehensive Foundation", Pres Edition 			Approach (3rd Il, Peter Norvig. ntice Hall, Last		

Detailed of Practical Contents				
No.	Contents	Hours		
1.	Introduction to MATLAB programming	4		
2.	Artificial neural networks programming with MATLAB	4		
3.	Hebb algorithm programming	8		
4.	Fuzzy controller system for Image Processing			
5.	Fuzzy PID Controller	8		
6.	Robotics Applications using genetic algorithms			
7.	Final Assessment 2			
Tex	 ANFIS toolbox in MATLAB Russell, Stuart Jonathan (Author), Norvig, Peter Artificial intelligence: a modern approach 2014. 			

Textbooks	 Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach (3rd Edition), Pearson Education Limited 2016 Artificial Intelligence: A Modern Approach (3rd Edition) by Stuart Russell, Peter Norvig. S. Haykin, "Neural Networks: A Comprehensive Foundation", Prentice Hall, Last Edition
	 ANFIS toolbox in MATLAB Russell, Stuart Jonathan (Author), Norvig, Peter Artificial intelligence: a modern approach 2014.

Department	Electronics Engineering	Major	Industrial Electronics & Control			&		
Course Name	Mechatronics	Course Code	ELCC428					
D •••	EL CC222	Credit Hours	<mark>ours</mark> 4 стн				6	
Prerequisites	ELCC322	CRH	L	3	Р	P 2 T		1
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Modern products (such as automobiles, cameras, medical equipment, space craft, communication satellites, etc.) and manufacturing equipment (such as 3D printers, CNC machines, industrial robotics and autonomous systems, etc.) contain numerous computers and mechatronics modules. Their creations require engineers to be able to combine mechanical, electric, electronic and software subsystems using advanced scientific and engineering knowledge.

This course introduces to students the basic mechatronics system components, and the design principles of using mechatronics to meet functionality requirements of products, processes and systems. Several lab-oriented assignments and team-based course projects are presented with innovative case studies in diverse application domains. The course will also prepare the students to read literature, understand research problems, and identify possible innovations to the field.

Topics:

- Introduction and mechatronics
- Micro-controllers and electrical components
- Actuators and control
- Mechanical components & Mechanisms
- Programmable motion control and algorithm development
- Sensors
- Closed loop control
- Digital fabrication and 3D printing
- Digital control
- Robotics and autonomous systems

Experiments: If applicable, it will support the course topics

References :

- De Silva, Clarence W.; Halgamuge, Saman K.; Khoshnoud, Farbod; Li, Maoqing, Mechatronics: fundamentals and applications, CRC Press, 2016.
- Felix Hüning, Fundamentals of Electrical Engineering for Mechatronics, De Gruyter Oldenbourg, 2014.

Detailed of Theoretical Contents			
No.	Contents	Hours	
1	Introduction and mechatronics	3	
2	Micro-controllers and electrical components	8	
3	Actuators and control	6	
4	Mechanical components & Mechanisms	6	

5	Programm	able motion control and algorithm development	8			
6	Sensors	Sensors				
7	Closed loo	p control	6			
8	Digital fab	rication and 3D printing	6			
9	Multi-mechatronics systems 6					
10	Robotics and autonomous systems,					
11	Final Assessment.					
 De Silva, Clarence W.; Halgamuge, Saman K.; Khoshnoud, Farbod; Li, Maoqing Mechatronics : fundamentals and applications, CRC Press, 2016 Felix Hüning, Fundamentals of Electrical Engineering for Mechatronics, De Gruyte Oldenbourg, 2014. 						

No.	No. Contents			
1.	Mechatronic systems modeling	6		
2.	Actuators			
3.	Sensors and conditioner	4		
4.	Micro-controller and DSP programming	6		
5.	Case study	6		
6.	6. Final Assessment.			
Tex	Textbook • Sabri Cetinkunt, Mechatronics, Wiley, 2006.			

Textbooks	 De Silva, Clarence W.; Halgamuge, Saman K.; Khoshnoud, Farbod; Li, Maoqing, Mechatronics : fundamentals and applications, CRC Press, 2016 Felix Hüning, Fundamentals of Electrical Engineering for Mechatronics, De Gruyter Oldenbourg, 2014.
	• Sabri Cetinkunt, Mechatronics, Wiley, 2006.

Department	Electronics Engin	eering	Major	Industrial Electronics & Control				&		
Course Name	Programming Logic	Circuits	Course Code	ELCC435						
D	EL CC225		Credit Hours	4			СТН		6	
Prerequisites	ELUC525		CRH	L	4 CTH L 3 P 2 1		Т	1		
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

An introductory course on programmable logic controllers (PLCs). Topics include an overview of PLCs, PLC hardware components, basics of PLC programming, development of fundamental PLC ladder programming, timers and counters, data manipulation, concepts in analog data I/O advanced programming techniques, PLC sensors and actuators, and PLC communication Networks. Classroom instruction is supported by laboratory activities through which students use PLCs to perform industrial control functions, troubleshooting, and networking PLCs in situations of typical industrial projects. **Topics :**

- Programmable Logic Controllers
- Input/Output Devices
- Digital Systems
- Input/Output Processing
- Ladder and Functional Block Programming
- Programming Methods
- Internal Relays
- Jump and Call
- Timers
- Counters
- Shift Registers
- Data Handling
- Designing Systems
- Programs
- PLC Process application
- Advanced PLC topics and networks
- **Experiments**: If applicable, it will support the course topics

References :

- William Bolton, Programmable Logic Controllers, sixth edition 2015, Linacre House, Jordan Hill, Oxford OX2 8DP, UK
- L. A. Bryan, E. A. Bryan THEORY AND IMPLEMENTATIONPROGRAMMABLECONTROLLERS, An Industrial Text Company Publication Atlanta Georgia USA Second Edition
- S7-1200 Programmable controller Industry Support Siemens 2017
- H. Jack, Automating Manufacturing Systems with PLCs, Lulu Press, Inc, 2010

Detailed of Theoretical Contents					
No.	No. Contents				
1	Programmable Logic Controllers: Controllers, Hardware, Internal Architecture, PLC	2			
	Systems				

2	Input/output Device	es: Input Devices, Output Devices, Examples of Applications	2			
3	Digital Systems: T Octal, Hex, and B Systems, Sequentia	he Binary System, Octal and Hexadecimal, Numbers in the Binary, CD Systems, Binary Arithmetic, PLC Data, Combinational Logic Il Logic Systems	2			
4	Input/output Proces Protocols, Netwo Input/output Addre	ssing: Input/output Units, Signal Conditioning, Remote Connections, rks, Examples of Commercial Systems, Processing Inputs, sses	6			
5	Ladder and Funct Latching, Multiple	tional Block Programming: Ladder Diagrams, Logic Functions, Outputs, Entering Programs, Function Blocks, Program Examples	4			
6	Programming Meth	nods: Instruction Lists, Sequential Function Charts, Structured Text,	2			
7	Internal Relays: In Operation, Set and	ternal Relays, Ladder Programs, Battery-Backed Relays, One-Shot Reset, Master Control Relay,	4			
8	Jump and Call: Jun	np, Subroutines,	4			
9	Timers: Types of T Timers, Programm	imers, On-Delay Timers, Off-Delay Timers, Pulse Timers, Retentive ing Examples	4			
10	Counters: Forms of Counter, Programming, Up- and Down-Counting, Timers with					
11	Shift Registers: Shift Registers, Ladder Programs					
10	Dete Hendline De					
12	Data Handling: Registers and Bits, Data Handling, Arithmetic Functions, Closed Loop 4 Control 4					
13	Designing System Finding, System De	s: Program Development, Safe Systems, Commissioning, Fault ocumentation	4			
14	Programs: Tempera	ature Control, Valve Sequencing, Conveyor Belt Control	4			
15	PLC Process application: Data Measurements and Transducers, Process Responses and Transfer Functions, Process Controllers and Loop Tuning6					
16	Advanced PLC topics and networks : Artificial Intelligence and PLC Systems, Fuzzy 6 Logic, Local Area Networks, I/O Bus Networks 6					
17	Final Assessment. 2					
	• W/:	lliam Bolton Programmable Logic Controllers sixth edition 2015	Linacra Housa			
Те	xtbook	 Winnam Botton, Programmable Logic Controllers, sixth edition 2013, Effacte House, Jordan Hill, Oxford OX2 8DP, UK L.A. Bryan and E.A. Bryan, Programmable controllers: theory and implementation, 2nd 				
	edr	tion 1997 by Industrial Text Company Published by Industrial Text Co	ompany.			

	Detailed of Practical Contents	
No.	Contents	Hours
1.	PLC Prerequisites :(Electrical basics, Industrial control)	2
2.	Addressing mode in PLC programming, basic logic programming in Instruction List and Structured Text languages	2
3.	Combination of Boolean operations and storing elements.	2
4.	Function blocks, edge-trigged functions, timers including switch-on delay, switchoff delay and pulse function	2

5.	Up counters, down counter, up/down counter with applications	2			
6.	Programming structure - function calls and jump statements	4			
7.	Analog to digital conversion and digital to analog conversion in PLC program.	4			
8.	Conveyor belt station: basic sensors and actuators in manufacturing industry 4				
9.	Sequence control development and programming. 4				
10.	PLC network communication and PROFIBUS configuration 4				
11.	Final Assessment.2				
Tex	 S7-1200 Programmable controller - Industry Support Siemens 2017. H. Jack, Automating Manufacturing Systems with PLCs, Lulu Press, Inc, 2010. 				

Textbooks	 William Bolton, Programmable Logic Controllers, sixth edition 2015, Linacre House, Jordan Hill, Oxford OX2 8DP, UK L.A. Bryan and E.A. Bryan, Programmable controllers: theory and implementation, 2nd edition 1997 by Industrial Text Company Published by Industrial Text Company.
	 S7-1200 Programmable controller - Industry Support Siemens 2017. H. Jack, Automating Manufacturing Systems with PLCs, Lulu Press, Inc, 2010.

Industrial Electronic and Control

ELECTIVES 2

Department	Electronics Engineering	Major	In	Industrial Electronics & Control				
Course Name	Supervision of Industrial Processes	Course Code	ELCC 412					
D	FL CC 425	Credit Hours	3			СТН		5
Prerequisites	ELCC 435	CRH	L	2	Р	2	Т	1
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours							

This course reviews principles used on process supervision. The principles and methodologies of bond graph are introduced for analysis of industrial process supervision. The topics cover the bond graph model based qualitative FDI, Diagnostic and Bi-causal Bond Graphs for FDI, Actuator and Sensor Placement for Reconfiguration. Isolation of Structurally Non-Isolatable Faults, Multiple Fault Isolation Through Parameter Estimation, Fault Tolerant Control.

Topics:

- Introduction to process supervision
- Bond graph modelling in engineering systems: Bond Graph Theory and Methodology
- Model-based Control
- Bond Graph Model-based Qualitative FDI
- Application to a Steam Generator Process
- Diagnostic and Bicausal Bond Graphs for FDI
- Actuator and Sensor Placement for Reconfiguration
- Isolation of Structurally Non-isolatable Faults
- Multiple Fault Isolation Through Parameter Estimation
- Fault Tolerant Control

Experiments: If applicable, it will support the course topics

References:

- Arun K. Samantaray and Belkacem Ould Bouamama, Model-based Process Supervision, A Bond Graph Approach, 2008 Springer-Verlag London Limited.
- Wolfgang Borutzky, Bond Graph Methodology Development and Analysis of Multidisciplinary Dynamic System Models

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction to process supervision	4
2	Bond graph modeling in engineering systems: Bond Graph Theory and Methodology	4
3	Model-based Control	6
4	Bond Graph Model-based Qualitative FDI	4
5	Application to a Steam Generator Process	6
6	Diagnostic and Bicausal Bond Graphs for FDI	6
7	Actuator and Sensor Placement for Reconfiguration	4

8	Isolation of	Isolation of Structurally Non-Isolatable Faults			
9	Multiple Fa	Multiple Fault Isolation Through Parameter Estimation			
10	Fault Toler	Fault Tolerant Control			
11	Final Asses	2			
Те	• Arun K. Samantaray and Belkacem Ould Bouamama, Model- Supervision, A Bond Graph Approach, 2008 Springer-Verlag London L				

	Detailed of Practical Contents			
No.	Contents	Hours		
1.	Presentation of Bond Graph Methodology	2		
2.	Bond Graph Methodology with matlab simulink	4		
	Application for Simple electrical network			
3.	Advanced electrical systems network	4		
4.	Simple linear mechanical	2		
5.	Advanced linear mechanical			
6.	6. system state-space representation			
7.	Bond graph for an electric d.c. motor	4		
8.	8. Bond graph First order control system			
9.	9. Bond graph Second order control system			
10.	2			
Tex	Textbook• Wolfgang Borutzky, Bond Graph Methodology Development and Analysis Multidisciplinary Dynamic System Models.			

	Arun K. Samantaray and Belkacem Ould Bouamama, Model-based Process Supervision, A Bond Graph Approach, 2008 Springer-Verlag London Limited.
I extbooks	• Wolfgang Borutzky, Bond Graph Methodology Development and Analysis of Multidisciplinary Dynamic System Models.

Department	Electronics Engineering	Major	Industrial Electronics & Control				&	
Course Name	Industrial Robotics	Course Code	ELCC436					
D		Credit Hours CRH	3 СТН				5	
Prerequisites	EICC472		L	2	Р	2	Т	1
CRH: Credit Hours L: Lecture P: Practical T: Tutoria				Contac	t Ho	urs		

Understand the different types of industrial robots, components, architecture and kinematic and dynamic modelling. Different methods of programming robots are discussed. Students will gain experience in handling and programming real industrial robots. They acquire skills about design, simulate and program robotic industrial applications. Thanks to simulation proposed work the student will get by himself different functionalities about a common and commercial IDE (Integrated Development Environment) for industrial robot programming.

The aim of the course is the introduction to Industrial Robotics from both theoretical and practical aspect. The importance of industrial applications and future.

Enable students to acquire basic knowledge of control and programming of industrial robots. For this we have tried to achieve a balance between the theoretical aspects, the study of the components that make up a robot (mechanical, computer and control), and applications (programming and implementation criteria of robotic systems).

Topics:

- Introduction
- Morphology and robotic technologies
- Control architecture of Industrial controllers
- Industrial Robotic Applications
- Kinematic Control
- Dynamic modelling
- Programming of robots
- Industrial implantation criteria and relevant issues

Experiments: If applicable, it will support the course topics

References:

- Craig, John J. Introduction to robotics: mechanics and control. Pearson Education. 2014
- Mark W. Spong, Seth Hutchinson and M. Vidyasagar, Robot Modeling and Control, John Wiley and Sons, 2006.
- Paul, Richard P. Robot manipulators, mathematics, programming, and control: the computer control of robot manipulators. MIT Press. 1981

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction, Definitions and terms, Historical evolution, Industrial Robot market and	4
	regulations, Statistics and trends in Industrial Robots Market	
2	Morphology and robotic technologies, Structures and basic configurations, Review of	6
	main sub-systems: mechanical, Review of main sub-systems: actuators and drives,	

	Review of	main sub-systems: sensors			
3	Control are interface an	chitecture of Industrial controllers, Control architecture issues, Man-machine nd communications, Controller functionalities.	6		
4	Industrial	Robotic Applications.	6		
5	Kinematic kinematic	Control, mathematical tools, Kinematic modeling, Direct and inverse problem formulation and resolution, Differential modeling,	6		
6	Dynamic n formulation	nodeling, Dynamic Control problem formulation, Euler-Lagrange n, Direct and inverse dynamics main issues., Dynamic control issues	6		
7	Programmi and spatial	ing of robots., Classification and Programming methods, Coordinate systems references	6		
8	 8 Industrial implantation criteria and relevant issues. Design aspects for Flexible Manufacturing Cells based on industrial robots and trends, Safety assurance in Industrial robots, Introduction to Collaborative Robots. 				
9	Final Asse	ssment.	2		
 Craig, John J. Introduction to robotics: mechanics and control. Pearson Education. 201 Mark W. Spong, Seth Hutchinson and M. Vidyasagar, Robot Modeling and Control John Wiley and Sons, 2006. Paul, Richard P. Robot manipulators, mathematics, programming, and control: t computer control of robot manipulators. MIT Press. 1981 					

		Detailed of Practical Contents			
No.		Contents	Hours		
1.		• Operate the Teach Pendant	4		
		Navigate the Controller Software			
2.		• Power up and Jog the Robot	6		
		Power down the Robot			
		Perform all Jog Methods			
3.		Execute production operations	6		
		Perform Frame setup			
		• Create, modify and execute a material handling program			
4.		Understand all Programming Instructions	6		
		 Understand all Positional Information (CARTESIAN vs. JOINT) 			
		• Understand all Motion Types (JOINT, LINEAR, CIRCULAR)			
5.		• Create, set up and execute MACROs	6		
		• Configure, Monitor, Force, and Simulate Input and Output Signals			
		 Perform Standard Backup and restore programs and files 			
6.	Final As	sessment.	4		
••					
Tex	 Craig, John J. Introduction to robotics: mechanics and control. Pearson Education. 2014 Mark W. Spong, Seth Hutchinson and M. Vidyasagar, Robot Modeling and Control, John Wiley and Sons, 2006. Paul, Richard P. Robot manipulators, mathematics, programming, and control: the computer control of robot manipulators. MIT Press. 1981 				

Textbooks	 Craig, John J. Introduction to robotics: mechanics and control. Pearson Education. 2014 Mark W. Spong, Seth Hutchinson and M. Vidyasagar, Robot Modeling and Control, John Wiley and Sons, 2006. Paul, Richard P. Robot manipulators, mathematics, programming, and control: the computer control of robot manipulators. MIT Press. 1981
	• Industrial Robotics Technology programming and Applications - M.P.Groover, M.Weiss, R.N.Nagel, N.G.Odrey.

Department	Electronics Engin	eering	Major	Industrial Electronics & Control			&		
Course Name	Electric vehic	le	Course Code		ELCC463				
D			Credit Hours 3 стн		СТН		5		
Prerequisites	ELCC428		CRH	L	2	Р	2	Т	1
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

Conventional cars. Electric vehicle (EV) development history. Vehicle specifications. Architecture of Electrical vehicle system (two, three and four wheelers). Grid connected Electric Vehicle system. Hybrid vehicles with drive trains for series, parallel, combination. Automotive control area protocols. Types of motor used with special duty and constructions. Types of power storage used in Electrical vehicles. Power management system strategy and control strategy. Auxiliary electrical system in vehicles. Automotive steering systems. Automotive semiconductor devices, components and sensors. Automotive motor drives actuators and control. Testing of electric motor, controllers and hybrid electric vehicles. Safety components of Electrical vehicles. Passenger safety system.

Topics:

- Introduction to electric and hybrid vehicles
- Hybrid vehicle architectures
- Propulsion System Analysis
- Fuel cell vehicles
- Electric Motor Drive systems for EV/HEVs
- Power Electronic converters for electric and hybrid vehicles
- Energy Storage
- Energy management and control strategies
- More Electric Aircraft and More Electric Architectures

Experiments: If applicable, it will support the course topics

References:

- Chris Mi, M A Masrur, D W Gao, "Hybrid Electric Vehicles Principles and applications with practical perspectives," Wiley, 2011.
- Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals," CRC Press, 2010
- John Miller, "Propulsion Systems for Hybrid Vehicles," Institute of Electrical Engineers, UK, 2004 (recommended)
- C.M. Jefferson & R.H. Barnard, "Hybrid Vehicle Propulsion," WIT Press, 2002.
- James Larminie and John Lowry, "Electric Vehicle Technology Explained, "Oxford Brookes University, Oxford, UK, 2003.

Detailed of Theoretical Contents				
No.	Contents	Hours		
1	Introduction to electric and hybrid vehicles	4		
2	Hybrid vehicle architectures: Series hybrid vehicle architectures- range extender and full hybrid systems, Parallel hybrid architectures, Plug-in hybrid architectures, Commercially available electric and hybrid vehicles	4		
3	Propulsion System Analysis: Basic Mechanics of a Vehicle, Energy consumed in a vehicle, Powertrain component sizing, Vehicle Simulation, Driving cycles, Energy requirements, City cycle, highway cycle, and combined cycle	6		
4	Fuel cell vehicles	4		
5	Electric Motor Drive systems for EV/HEVs	6		
6	Power Electronic converters for electric and hybrid vehicles	6		
7	Energy Storage: Battery energy storage, Battery charging, Ultracapacitors	6		
8	Energy management and control strategies: All electric range, Engine dominant blended strategy, Electric dominant strategy, Hybrid vehicle control strategies	6		
9	More Electric Aircraft and More Electric Architectures	4		
10	10 Final Assessment.			
Те	xtbook • "Mechatronics," Sabri Cetinkunt, Wiley, 2006.			

Detailed of Practical Contents			
No.	Contents	Hours	
1.	Electric Motor modeling and simulation	4	
2.	Power Semiconductor AC and Dc motors drives	8	
3.	Energy sources: Battery and Others	6	
4.	Sensors	4	
5.	Vehicle-to-Vehicle, Vehicle-to-Infrastructure Communications		
6.	Final Assessment.	4	
 Chris Mi, M A Masrur, D W Gao, "Hybrid Electric Vehicles – Principles and applications with practical perspectives," Wiley, 2011. John Miller, "Propulsion Systems for Hybrid Vehicles," Institute of Electrical Engineers, UK, 2004. 			

	"Mechatronics," Sabri Cetinkunt, Wiley, 2006.
Textbooks	 Chris Mi, M A Masrur, D W Gao, "Hybrid Electric Vehicles – Principles and applications with practical perspectives," Wiley, 2011. John Miller, "Propulsion Systems for Hybrid Vehicles," Institute of Electrical Engineers, UK, 2004.

Appendix Laboratory Equipment, Workshops and Laboratories

No.	Laboratory name / workshop	Capacity of training	Number of trainers	Training courses benefiting from the laboratory / workshop / lab
1.	Circuits LAB	20	1	 Circuits Analysis Analog and Pulses circuits Digital communication systems
2.	Electronic Circuits Design LAB	20	1	 Embedded systems Digital systems design
3.	Measurements Lab.	20	1	 Sensors and Actuators Computer Aided Design
5.	Industrial process Control Lab.	15	1	 Industrial process control Digital Control systems
6.	Power Electronics Lab.	15	1	 Power Electronics Electric drives
7.	Robotics LAB	15	1	 Robotics Artificial Intelligence Industrial Robotics
8.	PLC LAB	15	1	 PLC Supervision of Industrial Processes
9.	Mechatronics LAB	15	1	 Mechatronics Electric Vehicles

Industrial Electronic and Control

List of Detailed Equipment for Each Laboratory, Workshop or Lab Circuits LAB

No.	Product's Name	Quantity	
1.	Personal Computer	20	
2.	Pspice package software	1	
3.	Proteus-ISIS package software	1	
4.	MATLAB package software	1	
	معامل هذه المقررات تحتاج الى أجهزة كمبيوتر و نسخ من البرامج المستخدمة		

List of Detailed Equipment for Each Laboratory, Workshop or Lab Electronic Circuits Design LAB

No.	Product's Name	Quantity
1.	Function generator	12
2.	Measurement devices; voltmeter, ammeter and wattmeter	40
3.	Electronic components, diode and transistor	70
4.	Resistances, coils and capacitors	120
5.	Switches	50
6.	Oscilloscope	12
7.	COM3LAB unit	12
8.	Personal Computer	12
9.	XILINX ISE package software	1
10.	FPGA Boards	5
11.	ASIC Boards	5
12.	Personal Computer	20

Measurements Lab.				
No.	No. Product's Name			
1.	Function generator	12		
2.	Electronic components, diode and transistor	60		

Industrial Electronic and Control

3.	TBS1KB - Digital Oscilloscope from Tektronix .	12
4.	Measurement devices; voltmeter, ammeter and wattmeter	12
5.	LM35 Sensor	12
6.	PIR sensors	12
7.	Arduino Duemilanve or Uno board .	10
8.	Breadboard and connecting wires .	10
9.	Biosensors, RTD	20
10.	Personal Computer	20
11.	Electronic components, diode and transistor	120
12.	Resistances, coils and capacitors	120

	Industrial process Control Lab.	
No.	Product's Name	Quantity
1.	Main control device	12
2.	Oscilloscope	12
3.	Control applications	6
4.	Control panel	6
5.	Fault diagnosis panel	6
6.	Amplifier unit	6
7.	COM3LAB unit	15

Г

Industrial Electronic and Control

1

8.	Personal Computer	12

List of Detailed Equipment for Each Laboratory, Workshop or Lab

No.	Product's Name	Quantity
1.	Function generator	12
2.	Triac Module with protection 10A/500V	1
3.	Three-phase Control half & Full Converter	1
4.	Three-phase half & Fully Control Power Circuit	1
5.	Three Phase Inverter Stack for PWM Inverter, Semikron	1
6.	Single Phase Fully Control Bridge Converter with RL Load	1
7.	Gate Firing Circuit trainer	1
8.	Submicron Make Inverter	1
9.	BC Jone Chopper	1
10.	Oscilloscope	12
11.	Plug-in Board	12
12.	Measurement devices; voltmeter, ammeter and wattmeter	48
13.	Electronic components, diode and transistor	80
14.	Resistances, coils and capacitors	160
15.	Synchroscope	12
16.	AC/DC stabilizer	12
17.	Tacho-generator	12
18.	IGBT 1000V/10A	12

19.	Selenium rectifier 25V/10A	12
20.	Machine test system	12

	Robotics LAB.		
No.	Product's Name	Quantity	
1.	FANUC ARC Welding Robot Package	1	
2.	DENSO Vision System	2	
3.	DENSO Four Axis Robot -10kg payload	2	
4.	FANUC Handling Robot Package -15kg payload	1	
5.	DENSO Six Axis Articulated Robot - 5kg payload	2	
6.	Tentram Robot - spindle type	1	
7.	Modularised Conveyor System (U-Shape)	1	
8.	Modularised Conveyor System (L-Shape)	1	

List of Detailed Equipment for Each Laboratory, Workshop or Lab		
PLC		
	LAB.	
No.	Product's Name	Quantity
1.	PLC Siemens S7 control unit	12

2.	Personal Computer with STEP7 and TIA Portal software	12
3.	Analog I/O (0-10V) simulator with electronic voltage indicators	12
4.	Binary signal simulator	12
5.	Servo motor with permanent magnets	12
6.	PT100 temperature sensor with a z 0-10V transcoder	12
7.	Angle encoder	12
8.	Stepper motor	12
9.	Electronic proportional regulator,	12

List of Detailed Equipment for Each Laboratory, Workshop or Lab

Mechatronics LAB.		
No.	Product's Name	Quantity
1.	Analog and Digital Motor Control Teaching Set	2
2.	Transducer and Instrumentation Trainer kit	2
3.	Pneumatic and Electro Pneumatic Trainer Kit	2
4.	Advance Hydraulic Trainer	2
5.	Robotics Training System	2
6.	PLC Analog and Digital	6
7.	Ladder Software	6
8.	Mechanisms Trainer.	2
9.	Industrial control trainer	2
10.	PC work stations with Keithley-Metrabyte data acquisition cards	4
11.	digital oscilloscopes (Tektronix)	4
12.	function generators	10

Industrial Electronic and Control

13.	Digital multi-meters	10
14.	Variable dual channel power supplies	10
15.	Soldering stations (Weller), tools, electronic components, integrated circuit chips, and breadboards	10
16.	KUKA Robot	1
17.	Microcontroller-TMDS3P701016A	3

References

	1.	Charles K. Alexander and Matthew N. O. Sadiku, Fundamentals of Electric
		Circuits. 5th Edition. McGraw-Hill
	2.	Thomas L.Floyed and David M Buchla, Electronics fundamentals circuits, devices, and application, 8 th edition Pearson
	3.	Kleitz, Digital Electronics: Pearson New International Edition: A Practical
		Approach with VHDL, Pearson; 9 edition (20 Sept. 2013)
	4.	Shaila Dinkar Apte, Signals and Systems: Principles and Applications, Cambridge University Press, 2016
	5.	Nathan Ida , Sensors, Actuators, and Their Interfaces: A Multidisciplinary Introduction, SciTech Publishing, Year: 2014
	6.	Steven E LeBlanc; Donald R Coughanowr, Process systems analysis and control, McGraw-Hill Higher Education, 2009
	7.	Rashid, Muhammad H; Power Electronics Handbook - Devices, Circuits, and
Textbooks		Applications, Elsevier, 2011
	8.	Marwedel, Peter, Embedded System Design : Embedded Systems, Foundations of Cyber-Physical Systems, and the Internet of Things, Springer International Publishing 2018
	9.	Lepuschitz, Wilfried, Robotics in education : latest results and developments, Springer, 2018
	10.	Charles L. Phillips • H. Troy Nagle • Aranya Chakraborttym, digital Control System analysis and design, Fourth Edition 2015 Pearson Education Limited, Edinburgh Gate Harlow Essex, England
	11.	Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach
		(3rd Edition), Pearson Education Limited 2016
	12.	De Silva, Clarence W.; Halgamuge, Saman K.; Khoshnoud, Farbod; Li, Maoqing, Mechatronics : fundamentals and applications, CRC Press, 2016

Industrial Electronic and Control

13.	William Bolton, Programmable Logic Controllers, sixth edition 2015, Linacre
	House, Jordan Hill, Oxford OX2 8DP, UK