

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Director General for Curricula Design & Development المملكة العربية السعودية المؤسسة العامة للتدريب التقني والمهني الإدارة العامة لتصميم وتطوير المناهج

الخطط التدريبية للكليات التقنية

Curriculum for technical colleges

CURRICULUM FOR

الخطة التدريبية في قسم

الهندسة المدنية والمعمارية

Department Civil and Architectural

تخصص الهندسة المدنية التطبيقية

Major Applied Civil Engineering

نسخة أولية (تحت المراجعة)

Under Revision Draft

A Bachelor's Degree

1444 H – 2022 G

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering Applied Civil Engineering

Index

No.	Content	Page
1.	Index	1
2.	Program description	2
3.	Study plan	3
4.	Brief description	6
5.	Description of core courses	13
6.	Building Materials	13
7.	Structural Faults and Repair	18
8.	Architectural Ddrawings	20
9.	Structural Drawings	24
10.	Soil Mechanics	28
11.	Foundations Analysis and design	30
12.	Hydrology and water management	33
13.	Hydraulics	35
14.	Building Information Modelling	37
15.	Structural Analysis	40
16.	Design of Concrete Structures	42
17.	Mechanical, Plumbing and Electrical Engineering in building	44
18.	Highway Engineering	47
19.	Advanced Surveying	49
20.	Graduation Project	51
21.	Computer applications in construction management	52
22.	Design of Steel Structures	56
23.	Design of Special Concrete	58
24.	Building Sustainability	60
25.	OSHA/Neibosh/NFPA safety building	62
26.	Advanced Concrete Technology	64
27.	Utilising Solid wastes in construction	65
28.	Appendix Laboratory Equipment	67
29.	List of Detailed Equipment (Workshop or Lab)	68
30.	Pavement lab	68
31.	Soil Lab	68
32.	Concrete lab	69
33.	References	70

Program Description

Construction program is designed to ensure a high quality knowledge and training for bachelor students and to develop several skills required to meet the needs of the local labor market. This program trends to qualify technical engineers capable to operate and supervise different civil projects, to draft technical reports, to analyze and interpret data and to communicate effectively within multidisciplinary team the engineering problems.

Six semesters of training include mainly English communication, mathematics and professional ethics, communication tools and soft skills, project management in building, quality management and leadership. It also emphasizes knowledge of specialized courses in civil engineering. These courses are architectural and structural drawings, Building materials, structural analysis, reinforced concrete design, geotechnical engineering, hydraulics, highway engineering, surveying, mechanical - electrical engineering in buildings and structural faults and repair.

Graduation project take in consideration a practical idea which be concretized in reality. This project must include prerequisites of all software's used in architectural and civil engineering to simulate the mechanical behaviour. For instance, the elaboration of prototype or working in existing project in collaboration with industry should be considered as the main output of the project. It will be supervised by qualified instructors. The outcomes of this project must be a report (technical or academic) including the experiment labs and the results of the model developed.

The Theoretical and Practical Tests and Graduation Projects Determine Learning Outcomes and Trainee Levels for each program.

The training courses contain a theoretical part and a practical part. The practical part is tested as a practical test and the theoretical part is a theoretical test with different evaluation methods

The Bachelor Degree Graduate gets the seventh level in the Saudi Arabian Qualifications Framework (SAQF).

Admission Requirements: The applicant must have a diploma in Civilization Construction and Architectural construction.

المؤسسة العامة للتدريب التقني والمهني Technical and Vocational Training Corporation

Engineering **Applied Civil Engineering**

Civil and Architectural

Directorate General for Curricula Design & Development

	Study Plan													
		Course				No.	of U	nits	1			رمز		
	No.	Code	Course Name	Prereq	و.م CRH	م ي ح L	عم P	ت م T	س.i CTH	المتطلب	اسم المقرر	ا <u>لقرر</u>	م	
ter	1	ENGL 301	English Language -1		4	4	г 0	2	6		لغة انجليزية ١	۳۰۱ انجل	١	الفح
1st Trimester	2	MATH 301	Mathematics -1		4	3	2	1	6		بین ریاضیات ۱	۳۰۱ ریاض	۲	الفصل التدريبي الاوز
st]	3	PHYS 301	Physics		4	3	2	1	6		فيزياء	۳.۱ فيزي	٣	2
-	4	CON5 311	Soil Mechanics		4	2	4	0	6		ميكانيكا التربة	۳۱۱یشید	٤	رول
			Total Number of Units	1	16	12	8	4	24		المجموع	1		
		Course				No.	of U	nits				رمز		
	No.	Code	Course Name	Prereq	و.م CRH	م ي ح L	عم P	تم T	س.i CTH	المتطلب	اسم المقرر	رمر المقرر	Ą	5
ster	1	ENGL302	English Language -2	ENGL 301	4	4	0	2	6	۳۰۱ انجل	لغة انجليزية ٢	۳۰۲ انجل	١	فصل
2nd Trimester	2	MATH 302	Mathematics -2	MATH 301	4	3	2	1	6	۳۰۱ رياض	ریاضیات ۲	۳۰۲ ریاض	۲	الفصل التدريبي الثاني
pu	3	PHYS 361	Physics -1	PHYS 301	4	3	2	1	6	۳۰۱ فيزي	فيزياء ا	۳٦١ فيزي	٣	ŗ.
5	4	CONS 321	Architectural Drawings		3	2	2	0	4		رسم معماري	۳۲۱یشید	٤	اني
			Total Number of Units		15	12	6	4	22		المجموع			
		Course				No.	of U	nits	1			رمز		
	No.	Code	Course Name	Prereq	و.م CRH	م ي ح L	عم P	تم T	س.i CTH	المتطلب	اسم المقرر	رمر المقرر	Ą	
	1	STAT 303	Statistics and Probability		3	3	0	1	4		الإحصاء والإحتمالات	۳.۳ احصا	١	13
rd Trimester	2	CONS 312	Building Materials		4	2	4	0	6		خواص مواد البناء	۳۱۲یشید	۲	الفصل التدريبي الث
	3	CON5 381	Structural Drawings	CONS 321	4	2	4	0	6	۳۲۱یشید	رسم انشائي	۳۸۱ی <i>شید</i>	٣	ريبي انثا
r)	4	CONS 373	Hydrology and Water Management		2	2	0	0	2		الهيدرلوجيا والتصرف في المياه	۳۷۳یشید	٤	الث
	5	CONS 334	Structural Analysis	MATH 301	4	2	4	0	6	۳۰۱ ریاض	تحليل انشائي	۳۳٤يشيد	٥	
			Total Number of Units		17	11	12	1	24		المجموع			
CRI	H: Creo	dit Hours	L: Lecture P: Practical	T: Tuto	rial	СТН	: :	س.أ	ارين،	ئى، تم:تم	مح: محاضرة، عم: عملي/ ورش	، معتمدة،	حدات	و.م:و
			Contact Hours								ساعات اتصال أسبوعي			

Civil and Architectural Engineering

Directorate General for Curricula Design & Development

المؤسسة العامة للتدريب التقني والمهني Technical and Vocational Training Corporation

		c				No.	of U	nits				•.		
	No.	Course Code	Course Name	Prereq	و.م CRH	مح ا	ع هم P	تم T	س.أ CTH	المتطلب	اسم المقرر	رمز المقرر	م	
						L	-	-				~~~·		
	1	GNRL	Quality Tools and Applications		3	3	0	1	4		أدوات الجودة و تطبيقاتها	٤٠٤عامة	١	
-		404												Ę
itei		GNRL	Engineering Project		3	3	0	1	4					च
nes	2	402	Management								إدارة المشاريع الهندسية	٤٠٢عامة	٢	ā
Ē		CONS	Highway Engineering	CONS 311	4	2	4	0	6					†
4th Trimester	3	464								۳۱۱یشید	هندسة الرصف والطرق	٤٦٤ي <i>شيد</i>	٣	الفصل التدريبي الرابع
7		CONS	Foundation Analysis and	CONS 311	4	2	4	0	6					Ī
	4	372	Design							۳۱۱یشید	تحليل وتصميم الاساسات	۳۷۲یشید	٤	
	_	CONS	Advanced Surveying	MATH 301	4	2	4	0	6					
	5	341								۳۰۱ ریاض	مساحة متقدمة	۳٤۱ یشید	٥	
			Total Number of Units		18	12	12	2	26		المجموع			

		c				No.	of U	nits				•		
	No.	Course Code	Course Name	Prereq	و.م CRH	مح	عم P	تم T	س.i CTH	المتطلب	اسم المقرر	رمز المقرر	Ą	
	1	GNRL 405	Engineering Economy		3	3	Р 0	1	4		إقتصاد هندسي	٤٠٥ عامة	١	=
Trimester	2	CONS 374	Hydraulics	CONS 373	4	4	0	0	4	۳۷۳یشید	هيدروليكا	۳۷٤یشید	۲	الفصل التدريبي
	3	CONS 463	Computer Application in Construction Management	CONS 381	3	2	2	0	4	۳۸۱ی <i>شید</i>	تطبيقات الحاسب الالي في إدارة مشاريع التشييد	٤٦٣يشيد	٣	لدريبي ا ا
5th	4	CONS 473	Structural Faults and Repair	CONS 311	4	4	0	0	4	۳۱۱ یشید	عيوب التصميم والترميم	٤٧٣يشيد	٤	الخامس
	5	CONS 476	Design of Concrete Structures	CONS 334	5	4	2	0	6	۳۳٤يشيد	تصميم الانشاءات الخرسانية	٤٧٦ ي <i>شيد</i>	٥	
	6	CONS***	Elective Course -1		2	2	0	0	2		٦ يشيد*** مقرر اختياري (١)		٦	
			Total Number of Units		21	19	4	1	24		المجموع			

		Course				No.	of U	nits						
	No.	Code	Course Name	Prereq	و.م	مح	عم	تم	س.أ	المتطلب	اسم المقرر	رمز	p	
		Code			CRH	L	Р	Т	СТН			المقرر		
	1	GNRL 403	Communication Tools and Soft Skills		3	3	0	1	4		مهارات الإتصال	٤٠٣عامة	١	
ster	2	CONS 403	Engineering Ethics		2	2	0	0	2		اخلاقيات مهنة المهندس	٤٠٣ يشي <i>د</i>	۲	الفصلا
6th Trimester	3	CONS 465	Building Information Modelling	CONS 381	3	2	2	0	4	۳۸۱ی <i>شید</i>	نمذجة معلومات البناء	٤٦٥ي <i>شيد</i>	٣	الفصل التدريبي السادس
6th	4	CONS 475	Mechanical, Plumbing and ElectricalEngineering in Building		3	2	2	0	4		هندسة ميكانيكية وكهربانية	٤٧٥ي <i>شيد</i>	٤	السادس
	5	CONS***	Elective Course -2		3	2	2	0	4		مقرر اختياري (۲)	یشید***	٥	
	6	CONS 491	Graduation Project		4	2	4	0	6		مشروع التخرج	٤٩١يشيد	٦	
			Total Number of Units		18	13	10	1	24		المجموع			
CRE	H: Crea	lit Hours	L: Lecture P: Practical	T: Tuto	rial	СТН	: :	س.أ	لرين،	ش، تم:تم	مح : محاضرة، عم : عملي/ ورش	، معتمدة،	حدات	و.م:و
	Contact Hours										ساعات اتصال أسبوعي			

Civil and Architectural Engineering

Directorate General for Curricula Design & Development

Applied Civil Engineering

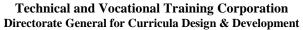
				L	Р	Т	СТН		
٢	Total Number of Semesters Units		و.م	Ł	ł	Ŀ,	س.أ	وحدات البرنامج	ا لمجموع الكلي لو
				79	52	13	144		
Total Cont	act Hours × 13	Co-operative Training	ات	لوحد ب	الكلي لتدري		11	التدربب التعاوني	ساعات الإتصال الكلية × ١٣
1	1872 0	0	1872		•	١٨٧٢			

Elective Courses

		c				No.	of U	nits				•.		
	No.	Course	Course Name	Prereq	و.م	ي ح	عم	تم	س.أ	المتطلب	اسم المقرر	رمز	م	
5		Code			CRH	L	Р	Т	СТН			المقرر		_
	1	CONS	Building Sustainability		2	2	0	0	2		استدامة المبانى	٤٨٦	、	المقررات الإختيارية
ours		486									المعتقار المدامي	یشید		ົງ
Elective Courses	2	CONS	Design of Special Concrete		2	2	0	0	2		تصميم الخرسانة سابقة الاجهاد	٤٣٣	۲	, Si si
tivo		433										یشید		10.4
Elec	3	CONS	OHSAS/Neibosh/NFPA Safety		2	2	0	0	2		أساليب السلامة في المباني	٤٠٤	٣	-
		404	Building									یشید		
	CI	RH: Credit		actical	T: Tut	torial	•	تمارين	تم :		معتمدة، مح:محاضرة، عم: •	: وحدات ا	و.م	
			CTH: Contact Hours							وعي	س.أ: ساعات اتصال أسب			
		Course			No.	of U	nits				رمز			
	No.	Code	Course Name	Prereq	و.م	•ح	عم	تم	س.أ	المتطلب	اسم المقرر	• •	م	
-5		Coue			CRH	L	Р	Т	СТН			المقرر		-
	1	CONS	Design of Steel Structures		3	2	2	0	4					1
nrs	· ·	42.4					-	Ŭ	4		تصميم الإنشاءات المعدنية	٤٣١	N	2
-		431					-	Ű	4		تصميم الانشاءات المعدنية	٤٣١ يشيد	١	ررات ۱
e Co	2	431 CONS	Advanced Concrete		3	2	2	0	4			- · ·	۱ ۲	ررات الإختي
tive Co	2		Advanced Concrete Technologies		3	2		-			تصميم الانشاءات المعدنية تقنيات الخرسانة المتقدمة	یشید	۲ ۲	ررات الإختيارية
Elective Co	2	CONS			3	2		-			تقنيات الخرسانة المتقدمة	یشید ٤٣٥	۱ ۲ ۳	المقررات الإختيارية - ٢
Elective Courses		CONS 435	Technologies				2	0	4			یشید ٤٣٥ یشید		1
Elective Co	3	CONS 435 CONS	Technologies Utilizing Solid Wastes in Construction	actical		2	2	0	4	-	تقنيات الخرسانة المتقدمة	یشید ۲۳۵ یشید ٤.٥ یشید	٣	1

Brief Description

Course Name		1- Building Materials	Course Code	CONS 312	Credit Hours	4
Descript	ion	Building materials course conce building sector like sand, aggreg elaboration of mixture design concrete in order to evaluate the is the following: Why the studen in civil Engineering in order to b • Select a material for a given us • Understand the limits of materi • Create a new material that will In second part, the student mu practice. The internal and extern in consideration to ensure a sust discusses two of the most method is a British method.	gates, cemen between ma ir physical a t should stud e able to: e based on c ials and the have some st understar al condition ainable cond	at, stones, steel, etc aterials such cemen and mechanical pro- dy building material considerations of co- change of their pro- desirable properties and concrete for usi s for samples' prepa- crete in structures. I	. It concerns nt paste, mo operties. The ls and their p ost and perfo perties with s. ng it in pro- uration must Moreover, th	s also the ortar and question properties rmance use fessional be taking iis course

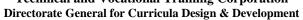

Course Name		2- Architectural Drawing	Course Code	CONS 321	Credit Hours	3
Descript	ion	This course aims to expand trained interpret architectural drawings students to communicate ideas Besides that, the course develop dimensional shapes. It is a singled from concept to construction. Upperformance, and collaborate mod	by using A and design ps the ability software ap se Revit to	autodesk Revit. Ho is faster, easier, a by to visualize and oplication that supp model designs wit	owever, it w nd more be communication ports a BIM v	vill allow autifully. ate three- workflow

Course Name		3- Structural Analysis	Course Code	CONS 334	Credit Hours	4
Descripti	on	This course deals to classify struc of loads on structures, analysis o by different methods and the infl in structural analysis used two co analysis and REVIT structural ar	of statically of uence lines f omplementa	determinate and inc for moving loads. C ry software's such	leterminate s computer app	structures

Course Name		4- Advanced Surveying	Course Code	CONS 341	Credit Hours	4
Descript	ion	 Surveying course contains the fo Introductory Land Surveying beginning of a student's program frey may also study the diff of work. Instructors may so different careers open to grate. Surveying Technical Writing program, students learn how online lectures about different to include. Students may be through their class's website. Land Surveying Legal Regoverview of the legal aspect chats to discuss relevant the professional ethics. This con land surveying program. Advanced Land Surveying Conformation of a program after they he courses. Instructors provide as geodesy, latitude and long. Engineering Problem Solving computer spreadsheet program applies to survey work. 	ag Course: gram. Studen ferent types chedule onli- iduates. g Course: To to write tec nt types of c assessed by or via e-ma gulations Co s of land sur- opics, such ourse is gene ourse: Studen ave success online lectu gitude and e ng with Sp grams to so	This course is gents learn the definit of tools and techni- ne chats where stu Taken at any point hnical specification contracts and the ap turning in practice il. Durse: Students an rveying. Instructors as property laws, erally taken in the ents may take this cosfully completed a ures on advanced s rror theory. readsheets: Studer lve engineering p	ion of land stiques used in dents can di in a land s is. Instructor propriate infection specification middle of a ourse toward an introducte urveying top nts study th roblems. Th	urveying. In this line scuss the surveying rs provide formation on reports with an ale online laws and student's ds the end ory level bics, such e use of ne course

Course Name	5- Structural Drawing	Course Code	CONS 381	Credit Hours	4
Descripti	n This course aims to expand traininterpret structural drawings of by using Autodesk Revit. How designs faster, easier, and mo ability to visualize and commu- application that supports a BIN model designs with precision effectively. The objective of t structural analysis and design of It concerns structural loads and codes support especially, direct structural modelling.	the major civ vever, it will a re beautifully nicate three-d l workflow fr on, optimize his course is f reinforced c load combina	vil, mechanical and illow students to co v. Besides that, the imensional shapes. om concept to cons performance, an to apply current c oncrete through usi itions, steel, concret	electrical en ommunicate course dev It is a single truction. Use d collabora ode requirer ng ROBOT e, materials	gineering ideas and elops the software e Revit to the more nents for software. including

Civil and Architectural Engineering


Course Name		6- Design of Concrete Structures	Course Code	CONS 476	Credit Hours	5
Descripti	ion	This course conduct to analys continuous beams; continuous design of stair slabs, Column Applying the principles, proceed structural design.	one-way, tw under ecce	wo-way and Flat s entrically loads, an	slabs. Analy d R.C. frar	vsing and mes, too.

Course Name		7- Hydraulics	Course Code	CONS 374	Credit Hours	4
Descrip	tion	The field of study covers subject water conservation and water the evaporation, and transpiration; such hydrographs; Water management water, sewage and wastewater, fi- study covers also subjects such dynamics of fluid flows; conserva- and open channels. Surface ar systems, storm water collection and pumping stations.	reatment. M Ibsurface flo t also includ lood protect as Fluid p ation of mas ad groundw	leteorology; precip ows, well hydraulics es treatment of drin ion and the water ta properties; hydrosta s, energy, and mom ater, quality contro	itation; stread s; runoff relad king water, stable. The fie able. The fie atics; kinematics; kinematics; kinematics entum; flow	am flow, tions and industrial ld of this atics and s in pipes stribution

Course Name		8- Highway engineering	Course Code	CONS 464	Credit Hours	4
Descript	ion	The course is concerned with the It introduces the design process vertical alignment design, cross strand deals with pavement of composition, pavement materials and, defects in Flexible pavement	of roads and s-sections ar lesign and s, asphalt mi	d intersections, incl nd earthworks. The evaluation. Topic x design, the paver	luding horiz e second ha s include j nent thickne	ontal and lf of this pavement

Course Name	9	- Structural faults and repair	Course Code	CONS 473	Credit Hours	4
Descrip	tion	This course focuses in structural strategies, serviceability and dura repair and demolition, rehabilitat	bility of con	crete, materials for	repair, techr	-

Course Name		10- Graduation Project	Course Code	CONS 491	Credit Hours	4
Descripti	10. Craduation Project		e prerequisit te the mech otype or wor ed as the ma be a report	tes of all software's anical behaviour of thing in existing pr in output of the pro- (technical or aca	used in arcl of such struc oject in coll ject. Further	hitectural ture. For aboration more, the

Civil and Architectural Engineering

Course Name		11- Mechanical, plumbing and Electrical Engineering for building	Course Code	CONS 475	Credit Hours	3
Descript	ion	This course is an overview of t methods mainly design and imple such as HAVC, Firefighting, Fire telephone and data systems en- applications should be used to REVIT.	ementation. e alarm, Elev sure the qu	These systems imp vators, Electrical po ality of living and	lemented for wer systems working. (r building , lighting, Computer

Course Name		12- Building Information Modelling	Course Code	CONS 465	Credit Hours	3
Descript	ion	BIM (Building Information Mo designing of sustainable houses of management concept is based anywhere access to project data concept empowers those in the fi office to optimize and manage a concerns also the preparation of t structural elements of the constr roofs, internal and external finish the BIM concept.	or reimagining on REVIT throughout eld to better all aspects of he site, earth uction, prec	ng the infrastructure software and enal the building constru- anticipate and act, f construction perfor works, formwork, ast concrete, mason	e of entire ci bles almost uction lifecy and those in prmance. Th scaffolding, nry works, f	ties. This anytime, cle. BIM the back is course different loors and

Course Name	13- Computer a construction	pplication in management	Course Code	CONS 463	Credit Hours	3
Descript	n project review s design intent an using Revit. M Information Mo can be combine tools help desi problems befor Manage the mo	solution that supp ad constructability fultidisciplinary of delling (BIM), di- ed into a single i ign and construc- re construction b	ports coordi y taking in a design data gital prototy integrated p ction profes begins, min n with proj	are, like Naviswork nation, analysis, an architectural and st created in a broa ype, and process pla roject model. Inter ssionals anticipate imizing expensive ect quantities and	nd communi ructural drav id range of nt design app ference man and avoid delays and	cation of wing that Building plications nagement potential rework.

Course Name	1	4- Foundation Analysis and Design	Course Code	CONS 372	Credit Hours	4
Descript	ion	This course deals with soil as an soil, the analysis of stress in se engineering significance that inc consolidation settlement and she and settlement in soil (Shallow at	oil, and soi clude the ch ar strength.	l behaviour under aracteristics of wat It also covers the f	conditions ter flow thro oundation ca	of major ough soil, alculation

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

Course Name	1	5- Soil Mechanics	Course Code	CONS 311	Credit Hours	4
Descripti	on	This course aims to expand the and interpret soil classification f the course develops analytical sk the real effect on their behaviour compaction of soils using proctor	from ASTM cills in deali r. It also cov	and AASTHO stands and AASTHO stands and provide the static	indards, Bes roperties of	ides that, soils and

Course	1	6- Hydrology and water	Course	CONS 373	Credit	2
Name		management	Code	0118 373	Hours	4
Descript	ion	The field of study covers sub drainage basin management, water treatment. Meteorolog transpiration; subsurface flows, elements of stream flow routing, fr applied to flood and drought fore management also includes treatm wastewater, flood protection and th as a group manager in a private co water resources consultant. Meteorology; precipitation; stream well hydraulics; runoff relations frequency and duration studies; e forecasting; application of hydrolog	water quali gy; precipit well hydrau requency and ecasting; app nent of drinl ne water table ompany, uni n flow, evapo and hydrog extreme valu	ty, irrigation, wate ation; stream flov ilics; runoff relation duration studies; ex- plication of hydrolo- cing water, industri e. Opportunities after versity lecturer, scie- ration, and transpira raphs; elements of es statistics applied	er conserva- w, evaporatons and hyd ctreme values gic technique al water, sev r graduation c entists in hyd tion; subsurfa stream flow	tion and ion, and rographs; s statistics es. Water wage and cover jobs brology or ace flows, y routing,

Course Name		17- Building sustainability	Course Code	CONS 486	Credit Hours	2
Descripti	ion	A sustainable building, or green focuses on increasing the efficient while reducing building impacts building's lifecycle, through bette and removal.[1] Though green bu view is that they should be designed environment on human health a energy, water, and other resour employee productivity, and (or degradation.	icy of resour s on human er siting, des ilding is inte ed and operation and the natur- rces, (b) Pro-	ce use — energy, w health and the en ign, construction, op rpreted in many diff ted to reduce the over ral environment by potecting occupant 1	vater, and ma vironment d peration, mai erent ways, a erall impact o (a) Efficien health and i	uring the ntenance, a common f the built atly using mproving

Course Name	18- Design of special concrete		Course Code	CONS 433	Credit Hours	2
Descripti	on	This course aims to design pre-st of pre-stressing, pre-stressing tec of fibre stresses, pre-stress losse ultimate loads, deflection and cr and construction integration, and analyse and design pre-stressed c	chnology, st es, flexural a ack control, use STRUC	eel and concrete m and shear behavior load balancing, an CTURAL BRIDGE	aterials, cor at service l chorage zon	nputation loads and le, design

Civil and Architectural Engineering

Course Name	1	19- Design of Steel Structures	Course Code	CONS 431	Credit Hours	3
DescriptionIn this course, trainees get to compression steel members, Colu footings, Beams for Flexure and Steel design Project. Using softwa 3D module is essential for steel design		umns under l Shear, bol /are through	r eccentric loading ted and welded Co	gs, Column bonnections, S	bases and Structural	

Course Name		20- OHSAS/Neibosh/NFPA safety building	Course Code	CONS 404	Credit Hours	2
Descript	ion	The design and construction of s harm) continues to be the prim managers, and other stakeholder by a high rate of attrition and mar individuals who die while on the of construction, it is important to	ary goal fo s. The build ny serious w job or perfor	r owners, architecting and construction ork accidents. Occurring work related	ts, engineers on industry i upational fat	s, project s marked alities are

Course Name			Course Code	CONS 435	Credit Hours	3
Descriptio	on	Advance Concrete is a computer- reinforced concrete structures. A engineering and drafting fields formulation and with software concrete design.	Advance Co s. The corr	oncrete is used in relation between c	the structur lifferent me	al / civil ethods of

Course Name	e CONS 405		Credit Hours	3		
Descript	ion	The main objective of this cours wastes for producing construction construction materials are using urban management systems are go in open fields. These activities p To safeguard the environment, different types of solid wastes v various construction materials.	n materials. the valuab enerating so ose serious many effor	The traditional me le natural resource lid wastes, and mos detrimental effects ts are being made	thods for pro- s. The indus st often dumps on the envi for the rec	oducing strial and ping them fronment. ycling of

Core Courses Description

Department	Civil And Architectural Engineering	Major	Applied Civil Engineer		ring			
Course Name	Building Materials	Course Code			CON	NS 312		
D		Credit Hours		4		CTH		6
Prerequisites		CRH	L	2	Р	4	Т	0
CRH: C	redit Hours L: Lecture P: Practical	T: Tutorial	CTH: 0	Conta	ct Ho	urs		

Course description: Building materials course concerns the identification of different materials used in building sector like sand, aggregates, cement, stones, steel, etc. It concerns also the elaboration of mixture design between materials such cement paste, mortar and concrete in order to evaluate their physical and mechanical properties. The question is the following: Why the student should study building materials and their properties in civil Engineering in order to be able to:

- Select a material for a given use based on considerations of cost and performance
- Understand the limits of materials and the change of their properties with use
- Create a new material that will have some desirable properties.

In second part, the student must understand concrete for using it in professional practice. The internal and external conditions for samples' preparation must be taking in consideration to ensure a sustainable concrete in structures. Moreover, this course discusses two of the most methods of concrete mix design, one American, the other is a British method.

Topics:

- The importance of building materials and its applications
- Methods for cement paste, mortar and concrete mix design
- Building materials properties properties
- Mechanical behaviour of cementitious mixtures

Concrete quality

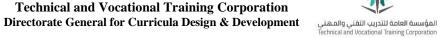
Experiments: if applicable it will support the course topics.

References :

- Properties of concrete (2011), handbook Material properties and rehabilitation of RCC buildings. general public works dept.
- A.M.NEVILLE, J.J.BROOKS (2010), handbook on Concrete Technology (second edition) of Prentice Hall is an imprint of Pearson, London.

	Detailed of Theoretical Contents	
No	Contents	Hours
1	Portland Cement	3
	Historical note	
	Manufacture of Portland cement	
	Chemical composition of Portland	
	• Different types of Cement	
	Hydration of cement	
	Calcium silicate hydrates	
	• Tricalcium aluminate hydrate and the action of gypsum	
	Cement paste Setting	

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development


False set

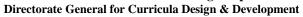
Civil and Architectural Engineering Applied Civil Engineering

Fineness of cement • Structure of hydrated cement Volume of products of hydration Capillary pores Heat of hydration of cement Influence of the compound composition properties of cement Effects of alkalis • **Cementitious materials of different types** 2 3 Categorization of cementitious materials Pozzolanas Fly ash Pozzolanic cements Silica fume Fillers Cement resistant to chlorides High performance cement 3 **Properties of aggregate** 3 General classification of aggregates • Classification of natural aggregates • Sampling • Particle shape and texture • Bond of aggregate • Strength of aggregate • Other mechanical properties of aggregate • Specific gravity • Bulk density • Porosity and absorption of aggregate • Moisture content of aggregate Bulking of fine aggregate Deleterious substances in aggregate Organic impurities- Clay and other fine material-Salt contamination-....Alkali-silica reaction 4 Admixtures 3 Benefits of admixtures Types of admixtures Accelerating admixtures Retarding admixtures • Water-reducing admixtures • Super plasticizers Nature of super plasticizers • Effects of superplasticizers Dosage of superplasticizers Loss of workability • Superplasticizer-cement compatibility Use of superplasticizers Waterproofing admixtures •

Technical and Vocational Training Corporation

5	Reinforcing steel	3
	Types of Steel Bars Cross-Section	
	Rolled Steel Section	
	• Types of Steel Bars	
	Manufacturing of Steel Bars	
	• Tensile test	
	Elastic Behavior	
	Anelasticity	
	The Proportional Limit	
	• Yielding and the Onset of Plasticity	
	• The Yield Point	
	Grain-Size Effects on Yielding	
	• Strain Hardening and the Effect of Cold Work	
	Ultimate Strength	
	• Toughness	
	• Ductility	
	True Stress-Strain Relationships	
	• Temperature and Strain-Rate Effects	
	Fracture Characterization	
6	Importance of Concrete and its applications	3
	Advanced Concrete in Industry	
	Different types of Concrete Preparation	
	Mixing Concrete, Pumped Concrete, Placing and	
	Compacting Concrete, Vibration Concrete, Finishing	
	Concrete, and Handling Concrete.	
7	Temperature Problem in Concrete	2
	• Hot-Weather Problems.	
	Hot- Cold Weather Concreting.	
	Large Concrete Masses.	
	Strength Development	
	• Normal curing, methods of curing, influence of	
	Temperature, maturity. Steam curing.	
	Concrete Types	
	• Plain, Reinforced, Prestressed, Precast, High Strength,	
	Fibrous, Polymer, Shotcrete, Light-Weight, Heavy-	
ρ	Weight and Mass Concrete.	`
8	Fresh Concrete Properties	2
	Consistency	
	Workability Factors official workshillty	
	Factors affecting workability.	
	Cohesion and Segregation.	
	• Bleeding.	
9	Properties of Hardened Concrete	2
	Compressive, flexural and tensile Strengths	-
	 Porosity 	
	 Total Voids in Concrete 	
	 Pore Size Distribution 	
	Stress-Strain Relationship	

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development



Civil and Architectural Engineering

	Water/Cement Ratio		
Aggregate /Cement Ratio			
	• Shear, bending and bond Strengths		
	• Shrinkage, swelling & Creep		
	Young Modulus of Elasticity		
10	Deformation and cracking independent of load	2	
	• Shrinkage and Swelling		
	Drying Shrinkage		
	Factors Influencing Shrinkage		
	A.M.NEVILLE, J.J.BROOKS (2010), handbook on Con	rete Technology	
Textbo	(second edition) of Prentice Hall is an imprint of Pearso	n, London.	

	Detailed of Practical Contents	
No	Contents	Hours
1	Tests on cement properties	6
	• Fineness of cement	
	Consistency of standard paste	
	• Setting time	
	• Soundness	
	• Strength of cement	
2	Tests on aggregates	7
	• Sampling	
	• Determination of Specific Weight for Coarse and Fine	
	Aggregates	
	Determination of Unit Weight of Aggregates	
	Determination of Organic Impurities in sand	
	Alkali–carbonate reaction	
	Thermal properties of aggregate	
	• Sieve analysis	
	Grading curves	
	• Fineness modulus	
	Grading requirements	
	Practical gradings	
	Grading of fine and coarse aggregates	
	Oversize and undersize	
	Gap-graded aggregate	
	Maximum aggregate size	
3	Tests on steel	7
	• Tensile test .	
	• Youngs modulus E-	
	• elastuc limit	
	• yield stress	
	• ultimate strength	
	• Load-Unload Test :	
	Relaxing criteria	
	Creed limit	
	Bending test .	

Technical and Vocational Training Corporation

Civil and Architectural Engineering

	IMPACT TESTING(To conduct Charpy V-notch impact	
	test and determine the ductile-brittle transition temperature	
	of steels).	
	HARDNESS TEST(Brinell Hardness Test- Vickers Hardness Test)	
4	Hardness Test) Concrete mix design	6
4	8	0
	 Preparation and identification of materials for concrete design 	
	 Concrete Mix Design using American Method 	
	 Concrete Mix Design using American Method Concrete Mix Design using British Method 	
5	Fresh Concrete Testing	6
5	 Method of preparing Fresh Concrete Samples 	U
	 Slump and Flow Tests 	
	 Ball Penetration Test 	
	 Compacting Factor Test 	
	 Vebe (VB) Test 	
	 Compacting Factor and Compactability Tests 	
	 Void ratio 	
6	Hardened Concrete testing	7
U	 Preparation of prismatic, cubic and cylindrical specimens 	1
	for Compressive, flexural and tensile strengths Test.	
	 Elaboration of direct and indirect tensile Strength 	
	 Bending Strength Test. 	
	Shear Strength Test.	
	 Pull Out Test 	
	 Beam Test. 	
	 Modulus of Elasticity Test. 	
	Static&Dynamic.	
	 Elasticity test in bending 	
	 Modular Ratio 	
	 Factors Influencing the Modulus of Elasticity 	
	 Poisson's Ratio 	
7	Non-Destructive Tests of Concrete	6
	Schmidt Hammer	Ū
	Ultrasonic Pulse Velocity	
	 Core Test 	
	 Loading Test 	
8	Drying Shrinkage & Moisture Movement Tests	7
Ū.	 Drying Shrinkage 	•
	 Moisture Movement 	
	Properties of concrete (2011), handbook Material properties and r	ehabilitation of RCC
Textbook	buildings. general public works dept.	

Textbooks	buildings. general public works dept.
Textbooks	A.M.NEVILLE,J.J.BROOKS (2010), handbook on Concrete Technology (second edition) of Prentice Hall is an imprint of Pearson,London.
	cution) of Trendee Han is an implifie of Tearson, London.

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

Applied Civil Engineering

					_			
Department	Civil and Architectural Engineering	Major	Applied Civil Engineering					
Course Name Structural Faults and Repair Cour		Course Code	CONS 473					
D	CONG 221	Credit Hours		4		СТН		4
Prerequisites	CONS 321	CRH	L	4	Р	0	Т	0

CRH: Credit Hours P: Practical L: Lecture T: Tutorial CTH: Contact Hours

Course Description: This course focuses in structural faults and repairs mainly in maintenance and repair strategies, serviceability and durability of concrete, materials for repair, techniques for repair and demolition, rehabilitation and retrofitting of structures.

Topics :

- Maintenance and repair strategies •
- Evaluation and inspection of concrete •
- **Repair** materials •
- Techniques for repair and rehabilitation •
- Repairs, rehabilitation and retrofitting of structures •

Experiments: if applicable it will support the course topics.

References : Krishan Kumar ER (2002), handbook on Repair and rehabilitation of RCC buildings. general public works dept.

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction	3
	• Building systems for traditional, modern constructions and associated faults	
	Maintenance methods	
	• repair and rehabilitation practices,	
	• various aspects of Inspection, Assessment procedure for evaluating a	
	damaged structure,	
	causes of deterioration	
2	Causes of deterioration	6
	Structural analysis	
	Mechanical properties	
	Causes and Types of damages	
	• Permeability	
	Sulfate Attack	
	Corrosion Reinforcement	
	• Attack by Sea Water	
	Acid Attack	
	Alkali-Aggregate Reaction	
	Resistance against fire	
3	Evaluation and inspection of existing concrete	5
	• Inspection of damages, concrete tests: non-destructive tests	
	Survey of concrete	
	Hammer test- ultrasonic test	
	• destructive tests	
	Core test- load bearing test chemical tests	
	• corrosion evaluation	

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

4	Materials for repair	3
	Concrete repair chemicals, special strength concrete, Fiber reinforced	
	concrete.	
	Parameters for selection of materials	
	Corrosion repair materials.	
5	Rehabilitation methods	3
	• Mortar repair for cracks,	
	Methods of corrosion protection.	
	Engineered demolition techniques.	
6	Structural Repairs work	5
	Concrete removal and preparation	
	Repair stages	
	Concrete frame work	
	Chemical application.	
	corrosion protection	
	Structural maintenance	
7	Non-structural Repairs work	3
	• plastering, water proofing, retrofitting, retiling etc.	
8	Conformity with Specifications	5
	• Variability of Strength.	
	Acceptance and Conformity.	
	Conformity Requirements for Other Properties.	
	Quality Control Charts.	
9	Application Project: Case study for structural faults and repair methods of	10
	existing building.	
Te	Krishan Kumar ER (2002), handbook on Repair and rehabilitation of	RCC building
1	general public works dept.	

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Applied Civil Engineering					
Course Name	Architectural Drawings	Course Code	CONS 321					
D		Credit Hours		3		CTH		4
Prerequisites		CRH	L	2	Р	2	Т	0
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours							

Course description: This course aims to expand trainees' knowledge in construction drawings, to read and interpret architectural drawings by using Autodesk Revit. However, it will allow students to communicate ideas and designs faster, easier, and more beautifully. Besides that, the course develops the ability to visualize and communicate three-dimensional shapes. It is a single software application that supports a BIM workflow from concept to construction. Use Revit to model designs with precision, optimize performance, and collaborate more effectively.

Topics:

- Introduction to REVIT software
- Creating an Effective Project
- Managing Content in Autodesk Revit

Experiments: If applicable, it will support the course topics.

References:

- Essentials Revit Architecture, Author: Ryan Duell, Tobias Hathorjn, Tessa Reist Hathorn.
- Revit Architecture 2018, Author: Douglas R. Seidler.
- Design Integration Using Autodesk Revit 2018, Author:

	Detailed of practical's Contents					
No	Contents	Hours				
	BIM Concepts	3				
	• Introducing building information modeling (BIM)					
	 Working in one model with many views 					
	 Understanding Revit Families categories. 					
1	Understanding the REVIT Architecture Interface					
	• Understanding Revit file types and content libraries.					
	• Using the Ribbon and the Quick Access Toolbar (QAT)					
	• The Properties and Project Browser palettes.					
	Navigating different views					
	Starting a Project	3				
	• Creating a new project from standard templates.					
	Configuring project settings					
	 Adding and adjusting floor levels 					
	 Linking AutoCAD DWG files 					
2	• Creating floor plan views.					
	Modelling Basics					
	 Adding and locating walls 					
	• Wall properties and types					
	 Adding doors and windows 					
	• Edit family door/windows properties.					

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

	Floors	3
		5
	• Creating Floors and modify boundary shape.	
	Copying multiple floors.	
	Sloped Floors and Ramps	
3	Changing floor type.	
	Reflected Ceiling Plans	
	Creating Ceilings	
	Adding Light Fixtures.	
	• Soffits.	
	Stairs, Ramps and Railings.	4
	 Adding stairs and railing. 	-
	 Working with component-based stairs 	
4	Modifying railings shape. Columns Architecture	
	Adding grids	
	 Adding and changing structural columns. 	
	Adding floor framing/beam system	
	Rooms Objects	3
	Adding rooms	
	• Tagging, naming and numbering	
	Understanding room bounding elements	
	Basic of Annotation	
5	• Adding Callout detail view (plan and section)	
-	• Adding text	
	Adding dimensions	
	 Adding symbols 	
	 Adding legend views 	
	Adding filled and masking regions. Curtain Walls	3
		3
	Creating Curtain Walls	
	Adding Curtain Grids	
6	Working with Curtain Wall Panels	
Ŭ	Coloured Room Plans	
	• Duplicating floor plan views.	
	• Setting colour schemes.	
	• Apply colouring types	
	Working with Visibility and Graphic Controls	3
	 Working with visibility and graphic overrides 	
	• Using object styles	
	• Hiding and isolating objects in a model	
	Understanding view range	
7	• Displaying objects above and below in plan views	
	 Using the Line work tool 	
	Reviewing orthographic drawing	
	 Plans. 	
	Elevations.	
	Sections.	
8	Three-dimensional graphics.	4
U	rm co-unicipionai graphico.	7

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

	Isometric drawings.	
	• Axonometric drawings.	
	Oblique drawings	
	Type of construction Drawings	3
	Preliminary drawings	
0	Presentation drawings (Architectural drawing)	
9	Working drawings	
	Shop drawings	
	• As-built drawings	
	Site and Landscaping	3
	• Creating topography from survey CAD points.	
	Adding topography land.	
	• Adding topo-surface.	
	 Modifying topography 	
	Civil drawings	
10	• Site plan.	
	• Plat map.	
	• Demolition plan.	
	• Topography map.	
	 Drainage an utility plans. 	
	 Landscaping and irrigation plans002E 	
	The Basics of Families	7
	Understanding Revit families and Model Hierarchy	
	• Loading and adding different Revit families	
	 Creating a new Table family from a template 	
11	 Using reference planes, parameters, and constraints 	
	 Adding solid geometry 	
	 Cutting holes using void geometry 	
	 Adding material. 	
	 Completing the family inside the project. 	
	Architectural drawing	7
	• Plans.	1
	Elevations.	
	Sections.	
12	Basic Presentation	
14	Rendering	
	 Applying Material 	
	 Exporting high resolution images 	
	 Organizing Project Browser Sheets 	
	Introducing Structural drawings	3
	Footing Plan and schedule	5
	 Grade beam layout and beams schedule 	
	 Floors farming plans and beam and columns schedules 	
13	• Floors farming plans and beam and columns schedules Creating Drawing Sets	
13	Understanding Schedule	
	Creating Schedules	
	• Editing a Schedule	
14	Working with Massing	3

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

• '	The Conceptual mass environment				
•	Basics 3D forms				
•	Solids and Voids				
• In	n-Place Massing				
•	Mass Floor and Area Schedule				
•]	Editing mass profiles				
•	Advanced massing forms				
Design	Options				
• D	befining design options				
• A	dding elements				
• E	diting design options				
• P	resenting and finalizing design options				
Introdu	Introduction to Dynamo				
Textbook:	Textbook: Autodesk Revit 2018 Architecture Basics, Author: ELISE MOSS				

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Арр	olied	Civil	Engi	neer	ing	
Course Name	Structural Drawings	Course Code		CONS 381					
D		Credit Hours 4				CTH		6	
Prerequisites	CONS 321	CRH	L	2	Р	4	Т	0	
СВН. С	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Course description: This course aims to expand trainees' knowledge in construction drawings, to read and interpret structural drawings of the major civil, mechanical and electrical engineering by using Autodesk Revit. However, it will allow students to communicate ideas and designs faster, easier, and more beautifully. Besides that, the course develops the ability to visualize and communicate three-dimensional shapes. It is a single software application that supports a BIM workflow from concept to construction. Use Revit to model designs with precision, optimize performance, and collaborate more effectively. The objective of this course is to apply current code requirements for structural analysis and design of reinforced concrete through using ROBOT software. It concerns structural loads and load combinations, steel, concrete, materials including codes support especially, direct Analysis Method (DAM), advanced auto-meshing and structural modelling.

Topics:

- Introduction to REVIT software
- Type of construction drawings
- Construction details

Experiments: If applicable, it will support the course topics.

References:

- Essentials Revit Architecture.
- Blueprint Reading, Author: Sam Kubba.
- Blue Print Reading: Interpreting Working Drawings, Author: E. M. Wyatt

	Detailed of practical's Contents	
No	Contents	Hours
1	 BIM Concepts Introducing building information modeling (BIM) Worksets and Worksharing Understanding Central Files. Creating a Central File. 	5
2	 Starting a Project Creating a new project from standard templates. Configuring project settings Adding and adjusting floor levels Linking AutoCAD DWG files Creating floor plan views. Modelling Basics Adding and locating walls Wall properties and types Adding doors and windows Edit family door/windows properties. 	5

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering Applied Civil Engineering

5 Floors Creating Floors and modify boundary shape. Copying multiple floors. • Sloped Floors and Ramps • 3 • Changing floor type. **Reflected Ceiling Plans. Creating Ceilings** • Adding Light Fixtures. Soffits. Stairs and Ramps and Railings. 5 Adding stairs and railing. • Working with component-based stairs Modifying railings shape. 4 **Columns Architecture.** Adding grids • Adding and changing structural columns. Adding floor framing/beam system **Rooms Objects**. 5 Adding rooms Tagging, naming and numbering • Understanding room bounding elements **Basic of Annotation**. 5 • Adding Callout detail view (plan and section) • Adding text • Adding dimensions • Adding symbols • Adding legend views • Adding filled and masking regions. **Curtain Walls.** 5 • Creating Curtain Walls • Adding Curtain Grids • Working with Curtain Wall Panels 6 **Colored Room Plans.** • Duplicating floor plan views. • Setting color schemes. • Apply coloring types Working with Visibility and Graphic Controls. 5 • Working with visibility and graphic overrides Using object styles • • Hiding and isolating objects in a model • Understanding view range 7 • Displaying objects above and below in plan views • Using the Line work tool **Reviewing orthographic drawing.** • Plans. Elevations. Sections. • **Three-dimensional graphics.** 5 8 • Isometric drawings.

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

	Axonometric drawings.	
	• Oblique drawings.	
	Type of construction Drawings.	5
	• Preliminary drawings.	
0	• Presentation drawings (Architectural drawing).	
9	• Working drawings.	
	• Shop drawings.	
	• As-built drawings.	
	Site and Landscaping	5
	• Creating topography from survey CAD points.	
	• Adding topography land.	
	• Adding topo-surface.	
	• Modifying topography	
4.0	Civil drawings.	
10	• Site plan.	
	• Plat map.	
	• Demolition plan.	
	• Topography map.	
	• Drainage an utility plans.	
	 Landscaping and irrigation plans002E 	
	The Basics of Families.	9
	• Understanding Revit families and Model Hierarchy	
	• Loading and adding different Revit families	
	• Creating a new Table family from a template	
11	• Using reference planes, parameters, and constraints	
	• Adding solid geometry	
	Cutting holes using void geometry	
	• Adding material.	
	• Completing the family inside the project.	
	Architectural drawing.	9
	• Plans.	
	• Elevations.	
	• Sections.	
12	Basic Presentation.	
	• Rendering	
	• Applying Material	
	• Exporting high resolution images	
	Organizing Project Browser Sheets	
	Introducing Structural drawings.	5
	• Footing Plan and schedule	
	• Grade beam layout and beams schedule	
	• Floors farming plans and beam and columns schedules	
13	Creating Drawing Sets	
	• Understanding Schedule	
	• Creating Schedules	
	• Editing a Schedule	
14	Working with Massing.	5
14	• The Conceptual mass environment	

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

• B	asics 3D forms							
• S	olids and Voids							
• Ir	In-Place Massing							
• N	Mass Floor and Area Schedule							
• E	diting mass profiles							
• A	dvanced massing forms							
D	Design Options.							
• D	Defining design options							
• A	Adding elements							
• E	diting design options							
• P	Presenting and finalizing design options							
Introdu	iction to Dynamo.							
	 Understanding Construction Drawings. Author: Huth, M. 							
Textbook:	Blueprint Reading Author: Sam Kubba.							
	• Blue Print Reading: Interpreting Working Drawings. Author: E. M. Wyatt							

Civil and Architectural Engineering

Applied Civil Engineering

Department		And Archite		Major	Applied Civil Engineering			ring		
Course Name	S	Soil Mechanio	es	Course Code	CONS 311		l			
D				Credit Hours		4		CTH		6
Prerequisites				CRH	L	2	Р	4	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

Course description :

This course aims to expand the knowledge of engineers in geotechnics, to analyse and interpret soil classification from ASTM and AASTHO standards, Besides that, the course develops analytical skills in dealing with physical properties of soils and the real effect on their behaviour. It also covers the statics of soil, soil structure and compaction of soils using proctor and CBR tests.

Topics:

- Soil identification
- Physical properties of soil
- Soil permeability
- Soil structure
- Statics of soil
- Soil compaction

Experiments: if applicable it will support the course topics.

References :

- An Introduction to the Mechanics of Soils and Foundations, Atkinsom, J., McGraw-Hill Inc, 1993.

	Theoretical Content	Hours
	- Soil identification by grain size distribution (sieve and	3
1	hydrometer analysis)	
	- Soil classification according to ASTM and AASHTO	
	standards	
2	- Soil consistency	3
-	States of soil	
	Soil classification from Atterberg Chart	-
	- Physical properties of soil	3
3	Dry and bulk densities	
-	Void ratio, porosity and permeability	
	Relative density, saturation degree	
	- Soil permeability	3
4	Darcy law	
-	Velocity and quantity of water flow	
	Intrinsic permeability	
	- Statics of soil	3
5	Stress tensor in soil	
_	Deformation ellipsoid	
	Mohr circle	_
	- Soil structure	5
6	Cohesive soils	
Ŭ	Non-cohesive soils	
	Determination of cohesion and friction angle	
7	- Compaction of soil	6
,	Proctor test (Standard and modified)	

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

Capacity bearing calculation from California Bearing Ratio,			
	CBR		
	Field tes		
Те	xtbook:	Atkinsom, J. (1993) "An introduction to the mechanics o	f soils and foundations",
10	ALDOUK.	McGraw-Hill Inc.	

	Detailed of Theoretical And Practical Contents					
weeks	Practical Content	Hours				
1	Sieve analysis	5				
2-3	Hydrometer analysis	5				
4	Exploiting of grain size analysis results	5				
4	Atterberg limits	5				
5	Exploiting of Atterberg limits results	5				
6	Permeability tests	5				
7	Standard Proctor test	3				
8	Modified Proctor test	3				
10	Exploiting of Proctor test	3				
11-12	CBR (Californian Bearing Ratio) test	3				
13	Exploiting of CBR test	3				
14	Cone sand test 3					
15-16	Swelling test by CBR	4				
Textbo	ok: Engineering Properties of soils based on laboratory testing, Prof. Krishr	na Reddy, UIC				

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Ар	Applied Civil Engineering CONS 372			ring	
Course Name	Foundations Analysis and design	Course Code						
D		Credit Hours	4			СТН		6
Prerequisites	CONS 311	CRH	L	2	Р	4	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Course description :

This course deals with soil as an engineering material. It includes the description of soil, the analysis of stress in soil, and soil behaviour under conditions of major engineering significance that include the characteristics of water flow through soil, consolidation settlement and shear strength. It also covers the foundation calculation and settlement in soil (Shallow and deep) and in rock from the lab and field tests. **Topics :**

- Stress distribution in soils
- Shear strength of soils
- Consolidation of soil
- Shallow and deep foundations design from labs and field

Experiments: if applicable it will support the course topics. **References :**

- Coduto, D.P., "Geotechnical Engineering Principles and Practices", Prentice Hall of India Private Limited, New Delhi, 2002.
- McCarthy D.F., "Essentials of Soil Mechanics and Foundations Basic Geotechniques", Sixth Edition, Prentice-Hall, New Jersey, 2002.
- . Das, B.M, "Principles of Geotechnical Engineering", (fifth edition), Thomas Books/ cole, 2002.

Muni Budhu, "Soil Mechanics and Foundations", John Willey & Sons, Inc, New York, 2000.

	Detailed of Theoretical Contents	Hours
1	- Soil description	3
	Disturbed and undisturbed samples	
	Labs and field description	
	Types of soils	
	Natural problem of soils	
2	- Stress distribution in soils	3
	Equations of static equilibrium	
	Hooke's law	
	Relations between moisture content, effective pressure and strength	
	The Boussinesq method for soil stresses	
3	- Shear strength of soils	2
	Components of shear strength	
	Soil tests to determine shear strength	
	Soil types according to shear strength	
	Mohr-Coulomb failure theory	
4	Consolidation of soil	2
	Types of ground movements	
	Compressibility	
	Terzaghi's theory of consolidation	

- Rock foundations
 - Settlement

Directorate General for Curricula Design & Development

	Consolidation test			
	Determination of co	nsolidation coefficient		
	Settlements			
5	Lateral earth press	sure	3	
	Lateral earth pressur	re at rest		
	Active earth pressur	e		
	Passive earth pressu	re		
	Active lateral pressu	re on inclined soil surface		
	Coulomb theory			
	Rankine theory			
	Retaining wall			
6	Slope stability		3	
	Types of movement	slopes	_	
	Factors in instability	-		
	Analysis of stability			
	Method of slices	, <u>F</u>		
	Friction-circle meth	od		
	Taylor's stability nu			
	Analysis of a plane			
7	Shallow foundation	2		
	Types and bearing c	_		
	Design of isolated for			
	Design of strip foun			
	Design of combined			
	Design of rafts			
	Numerical analysis			
8	Settlement calculat		2	
Ū			-	
9	Deep foundations I	Form field tests	2	
	Design of pile found			
	Design of piers and			
	Sheet Pile Walls (SH			
	Foundations for offs			
10	Rock foundation		2	
10			_	
11	Field tests		2	
 Coduto, D.P., "Geotechnical Engineering Principles and Practices" Prentice Hall of India Private Limited, New Delhi, 2002. McCarthy D.F., "Essentials of Soil Mechanics and Foundations Basic Geotechniques", Sixth Edition, Prentice-Hall, New Jersey, 2002. Das, B.M, "Principles of Geotechnical Engineering", (fifth edition) Thomas Books/ cole, 2002. Muni Budhu, "Soil Mechanics and Foundations", John Willey & Sons, Inc, New York, 2000. 				

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Detailed of practical's Contents				
weeks	Contents	Hours		
1-2	Consolidation test	7		
3	Unconfined compression test 7			
3	Direct shear test 7			
4-5	Triaxial shear test :			
	Explanation : $CD - CU - UU$			
	Execution : UU			
7-10	Field soil tests :	12		
	Standard penetration test SPT			
	Cone Penetration Test CPT			
	Non-destructive Tests: SASW			
10-14	Elaboration of Geotechnical report	7		
Textbo	Textbook: Engineering Properties of soils based on laboratory testing, Prof. Krishma Reddy, UIC			

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

chnical and Vocational Training Corpora

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Applied Civil Engineering			ing		
Course Name	Hydrology and water management	Course Code	CONS373					
D		Credit Hours	2			СТН		2
Prerequisites		CRH	L	2	Р	0	Т	0
CPH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Course description :

The field of study covers subjects such as hydrogeology, marine hydrology, drainage basin management, water quality, irrigation, water conservation and water treatment. Meteorology; precipitation; stream flow, evaporation, and transpiration; subsurface flows, well hydraulics; runoff relations and hydrographs; elements of stream flow routing, frequency and duration studies; extreme values statistics applied to flood and drought forecasting; application of hydrologic techniques. Water management also includes treatment of drinking water, industrial water, sewage and wastewater, flood protection and the water table. Opportunities after graduation cover jobs as a group manager in a private company, university lecturer, scientists in hydrology or water resources consultant.

Meteorology; precipitation; stream flow, evaporation, and transpiration; subsurface flows, well hydraulics; runoff relations and hydrographs; elements of stream flow routing, frequency and duration studies; extreme values statistics applied to flood and drought forecasting; application of hydrologic techniques.

Topics :

- Coastal Engineering
- Subsurface Hydrology
- Sediment Transport Engineering
- Computational River Hydraulics
- Transport Processes in Surface Waters
- Computational Watershed Hydrology
- Water Resources Systems Engineering
- Environmental Fluid Mechanics
- Statistical Hydrology
- Advanced Hydrology
- Advanced Problems in Hydromechanics and Hydraulic Engineering

Experiments: if applicable it will support the course topics.

References :

Lin, Shun D. and Lee, C. C. (2001) "Water and wastewater calculation manual", McGraw-Hill Professional.

	Detailed of Theoretical Content				
	Contents	Hours			
1	Coastal Engineering	2			
	An introduction to coastal engineering with emphasis on the interaction between				
	oceanic dynamic processes (waves, currents, and tides) and coastal regions				
	(beaches, harbors, structures, and estuaries) and on the engineering approaches				
	necessary to prevent adverse effects caused by this interaction.				

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

2		2
	Subsurface Hydrology	
	Basic principles of fluid flow in saturated and unsaturated materials. Darcy's law,	
	well hydraulics, determination of hydraulic properties of aquifers. Infiltration	
	theory. Discussions of artificial recharge, land subsidence, saltwater intrusion,	
	ground water quality and contamination.	
3	Sediment Transport Engineering	2
	Sediment properties and the mechanics of sediment transport. Threshold of	
	movement. Riverbed load and suspended load theories. Regime theory and stable	
	channel design. River diversion problems. Erosion. Geomorphologic and water	
4	quality aspects.	2
4	Computational River Hydraulics	2
	Use of professional computer programs for the solution of river hydraulics problems. General formulation of energy losses in a river reach. Methods of	
	handling the presence of bridges; software for handling bridges only. Channel	
	modifications. Floodway determination. Flow around islands. River networks	
	analysis.	
5	Transport Processes in Surface Waters	2
-	Four main topics are covered: (1) density-stratified two-layer systems in lakes	-
	and channels, with applications to mixed-layer growth, oil-spill containment,	
	salinity intrusions, (2) advection-diffusion modeling in channels, including	
	analytical and numerical solutions to steady and unsteady, one- and two-	
	dimensional problems, (3) mechanisms of diffusional transport, including	
	turbulence in channels and longitudinal shear dispersion, and (4) near-field	
	analysis of discharges, including similarity analyses of jets and plumes.	
6	Computational Watershed Hydrology	2
	Use of professional computer programs for the calculation of the runoff from	
	complex basins. Generation of unit hydrographs. Calculation of losses, channel	
	and reservoir routing, parameter optimization, and application of Kinematic wave technique to urban catchments.	
7	Water Resources Systems Engineering	3
/	Systems analysis, modeling, and optimization in water quantity and water quality	5
	management; linear, nonlinear, and dynamic programming models; stochastic	
	models; risk analysis; simulation. Application to engineering problems found in	
	the areas of water supply, water quality and process control, residuals, urban	
	drainage, and river basin development and management.	
8	Environmental Fluid Mechanics	2
	Advanced fluid mechanics associated with environmental flows, with variable	
	focus. Possible focus includes density-stratified flows (internal waves, plumes,	
	estuarine circulation); rotational flows (geostrophic flows, Kelvin waves,	
	Eckman layers); turbulence and mixing in the environment; dynamics of lakes.	
9	Statistical Hydrology	3
	Probability distributions applicable to hydrologic events; analysis of extremes,	
	floods and droughts; statistical association between hydrologic variables.	
	Analysis of hydrologic time series. Spectral and parametric formulation of stochastic models of rainfall runoff transfer and other	
	stochastic models of rainfall, runoff, rainfall-runoff transfer, and other hydrologic variables. Application of Markov chains and point processes to the	
	hydrologic variables. Application of Markov chains and point processes to the sequence of rainfall and other hydrologic events.	
10	Advanced Hydrology	3
10	Flood routing and overland flow theory. Parametric hydrology, linear and	3
	nonlinear analysis of rainfall-runoff systems, unit and instantaneous unit	
	nonlinear analysis of rainfall-runoff systems. Unit and instantaneous unit i	

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

chnical and Vocational Training Corporat

Civil and Architectural Engineering

Applied Civil Engineering

		hydrographs. Concep	otual and digital models for the simulation of the hydrologic		
		processes in watershe	eds and for runoff prediction		
	11	Advanced Problem	dvanced Problems in Hydromechanics and Hydraulic Engineering		
		Ideal fluid flow th			
		transients, wave the	bry; transport processes; and other topics selected by the		
		instructor.			
	Textbook:		Nazih K. Shammas, Lawrence K. Wang (2011) "Water s	upply and	
			stewater removal". John Wiley and Sons, Inc. USA.		

Department	Civil And Architectural Engineering			Major	Арр	Applied Civil Engineering				
Course Name	Hydraulics			Course Code		CONS 374				
D	CONS 373		Credit Hours	4			СТН		4	
Prerequisites				CRH	L	4	Р	0	Т	0
CRH: Credit Hours L: Lecture P: Practical				T: Tutorial	CTH: Contact Hours					

Course description: Fluid properties; hydrostatics; kinematics and dynamics of fluid flows; conservation of mass, energy, and momentum; flows in pipes and open channels. Formal laboratory experiments.

- Sources and distribution of water in urban environment, including surface reservoir requirements, utilization of groundwater, and distribution systems. Analysis of sewer systems and drainage courses for the disposal of both wastewater and storm water. Pumps and lift stations. Urban planning and storm drainage practice.
- Review of governing equations for fluid flow; Nondimensionalization and scaling; boundary layer formulation and application to rivers and lakes; water waves and oscillatory flows; flow around objects, drag, and sediment transport; introduction to turbulence; effects of density stratification, including internal waves and estuaries.
- Energy and momentum principles, design of open channels for uniform and nonuniform flow, boundary layer and roughness effects, flow over spillways, energy dissipation, flow in channels of nonlinear alignment and nonprismatic section.

Topics:

- Urban Hydraulics
- Introductory Environmental Fluid Mechanics
- Open Channel Hydraulics

Experiments: if applicable it will support the course topics.

References :

Lin, Shun D. and Lee, C. C. (2001) "Water and wastewater calculation manual", McGraw-Hill Professional.

	Detailed of Theoretical And Practical Contents				
	Contents	Hours			
1	1 Hydraulics: Sources and distribution of water in urban environment, including surface reservoir requirements, utilization of groundwater, and distribution systems. Analysis of sewer systems and drainage courses for the disposal of both wastewater and storm water. Pumps and lift stations. Urban				
	planning and storm drainage practice.				
2	Water sources Surface water Groundwater Quality control Groundwater	4			
3	Water distribution works Purposes of water uses	10			

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

	Rates of water consumption	
	Design population	
	Predicting demand for water	
	Fire demand	
	Types of tanks and reservoirs	
	Period of design	
	Types of distribution systems	
	Pressure zones and pressure in pipes	
	Types of pipes	
	Design of distribution systems	
	Appurtenances : joints pipes, valves, water meters	
	Management, operation and maintenance of distribution system	
4	Storm water and wastewater collection systems	6
	Collection of hydrological data	
	Precipitation	
	Evaporation and transpiration	
	Runoff	
	Rainfall and runoff analysis	
	Frequency of intense storms	
	Intensity-duration-frequency relationships	
	Collection of storm waters	
	Hydraulic design	
	Appurtenances	
	Operation and maintenance of drainage systems	
5	Sewerage systems	8
	Domestic and industrial wastes Collection of sanitary wastewater	
	Choice of collecting system	
	flow through sewers	
	Design of sewers	
	Gravity sewer pipe material	
	Building connections	
	Manholes	
	Trenchless technology	
	Appurtenances	
	Maintenance and sewer system rehabilitation	
6	Pumps and pumping stations	6
	Types of pumps	
	Pump characteristics	
	Pumps and their applications	
	Pumping station types	
	Pumping equipment	
	Inspection and maintenance	
7	Wastewater Treatment	4
	Wastewater characteristics	
	Wastewater treatment processes	
	Levels of wastewater treatment	
	Levels of wastewater treatment	
8	Reuse of wastewater	4
8	Reuse of wastewaterIntroductory Environmental Fluid Mechanics: Review of governing	4
8	Reuse of wastewater	4

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

chnical and Vocational Training Corpora

Civil and Architectural Engineering

Applied Civil Engineering

	turbulence; effects estuaries.		
9	channels for uniform	raulics: Energy and momentum principles, design of open and nonuniform flow, boundary layer and roughness illways, energy dissipation, flow in channels of nonlinear ismatic section.	6
Textbook:		Nazih K. Shammas, Lawrence K. Wang (2011) "Water s wastewater removal". John Wiley and Sons, Inc. USA.	upply and

Department	Civil And Architectural Engineering	Major	Applied Ci	Applied Civil Engineering			
Course Name	Building Information Modelling	Course Code	CONS 465				
Prerequisites	CONS 381	Credit Hours	3	СТН	4		
Trerequisites	00105 501	CRH	L 2 H		Г 0		
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours						

Course description: BIM (Building Information Modeling) can deliver business benefits whether the designing of sustainable houses or reimagining the infrastructure of entire cities. This management concept is based on REVIT software and enables almost anytime, anywhere access to project data throughout the building construction lifecycle. BIM concept empowers those in the field to better anticipate and act, and those in the back office to optimize and manage all aspects of construction performance. This course concerns also the preparation of the site, earth works, formwork, scaffolding, different structural elements of the construction, precast concrete, masonry works, floors and roofs, internal and external finishes, insulation and protection, shell structures using the BIM concept.

Topics :

- Building Information Modeling
- REVIT software
- Management concept
- Aspects of construction performance

Experiments: if applicable it will support the course topics.

- Roy Chudley, 5th edition, (2012) "Advanced Construction", Pearson, Prentice Hall.
- Tony Bryan (2010), " Construction". John Wiley and Sons.
- Eric Fleming (2009) " Construction". John Wiley and Sons.

	Detailed of Theoretical And Practical Contents	
No	Contents	Hours
1	 Understanding the BIM Concept Introducing building information modeling (BIM) Building Information Modeling What Is BIM Why Is BIM Important Understanding BIM Basic Benefits of BIM 	3
2	A Change in Method and Approach	3

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

•

Beyond Documentation.

Civil and Architectural Engineering Applied Civil Engineering

Migrating to BIM • BIM as a Workflow • Ranges of BIM • 7 **Integrated Design Teams** The Shift in Responsibility • Why an Integrated Design The Team Members 3 The Designers The Owner • The Contractor The Community • Collaboration, Commitment, and Passion. 3 Collaboration • **Owner Commitment** Project Team Passion • 4 **Facilitating Integration in Process** • **Design Phase Workshops** Predesign Schematic Design 3 • **Design Development** • Construction Delivery Method 5 Design-Bid-Build Negotiated Guaranteed Maximum Price • Design-Build • Construction Delivery Method the Best • 3 **Energy Modeling**. Using Renewable Energy. • Using BIM for Sustainable Materials 6 The future of BIM and Sustainable Design Moving Forward with Sustainable Design. Worksets and Worksharing 4 Creating a New Workset • Working with Local Files. Creating a Local File • 7 Synchronizing a Local File with the Central File. • Managing and Using the Power of Worksets Taking Ownership of Worksets. • Working with Model Elements and Their Worksets. • Controlling Visibility and Worksets. • Enhancing Communication. • **Expected Challenges** 6 Multiplatform Interoperability: Working with 2D • 8 and 3D Data **BIM Tools and Parametric Modeling** 7 **Parameters Understanding Parameter**

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Choosing the Correct • 9 Naming Parameters • Using Type Parameters • Using Instance Working with Formulas Sample Conditional Statements • 3 BIM Implementation with coordinate • coordinate system • 10 Clashing • Handling Clashing classification • **Communication Collaboration** 3 11 • Accounts Powers • The active workes • 12 The Evolution to Object-Based Parametric Modeling 3 • 4 Introducing Navisworks softwares • 13 **Basics Navisworks** softwares • Project Management Navisworks softwares • **Textbook:** Roy Chudley (2011) "Construction", Pearson, Prentice Hall. **BIM Handbook** A Guide to Building Information Modeling for Owners, Managers, Designers,

Engineers, and Contractors", Pearson, John Wiley & Sons, Inc.

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Ар	olied	Civi	l Eng	inee	ring
Course Name	Structural Analysis	Course Code		CONS 334				
D	N. 4. 201	Credit Hours	Credit Hours 4 CTH			4		
Prerequisites	Math 301	CRH	L	2	Р	4	Т	0
CRH: C	redit Hours L: Lecture P: Practical	T: Tutorial	CTH: 0	CTH: Contact Hours				

Course description: This course deals to classify structural systems, structural design process, computation of loads on structures, analysis of statically determinate and indeterminate structures by different methods and the influence lines for moving loads. Computer applications in structural analysis used two complementary software's such as ROBOT structural analysis and REVIT structural analysis for simulation purpose.

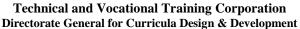
Topics:

- Force : Analytical and Graphical method
- Moment of Force and Couple of moment
- Free body and Equilibrium equations
- Statically analysis of simple Beam
- Trusses and Frame analysis methods
- Affecting Loads
- Indeterminate Structures
- Strain and stresses analysis
- Stiffness Matrix Method
- Finite Element Method

Experiments: if applicable it will support the course topics.

- HibblerRussel C., Structural analysis, 8th SI edition, Pearson, 2012.ISBN 981-06-8007-4
- Kennet M. Leet, Chia Ming Uang, Anne M. Gilbert, Fundamentals of Structural Analysis, 4thedition, McGraw-Hill.
- C.H.Morris, J.B. Willbur, and S. Utku, Elementary Structural Analysis, 3th edition, McGraw-Hill,1976
- Autodesk Robot Structural Analysis Professional 2015: Essentials Paperback October 24, 2014 by Ken Marsh ISBN-13: 978-0991518111

	Detailed of Theoretical Contents	
No	Contents	Hours
	Free body diagram and Equilibrium equations	4
1	• Different types of Supports	
	• statically determinate structures,	
	• statically indeterminate structures,	
	• Condition of indeterminacy and geometric stability.	
	Statically analysis of simple Beam	6
2	Calculi of reaction coordinate	
4	Internal forces and Moment	
	Analysis and behavior of beams	
	Trusses analysis methods	6
	Roof trusses / Bridge trusses	
3	• Sign convention	
	Joints method	
	Section Method	
	Frame Analysis	4
4	• System of forces	
	Moment of Couple	


Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

Applied Civil Engineering

	Varignon's Theorem			
	Affecting Loads	7		
	Load Distribution Analysis			
5	Load on Slab			
3	• Load on beam			
	Load on column			
	Load on foundation			
	Indeterminate Structures	6		
6	Slope deflection Method			
	Moment distribution method.			
	Strain and stresses analysis of structural elements	7		
_	Moment of Inertia			
7	Strain and Stress of axial force			
	• Strain and Stress of shear forces			
	Strain and Stress of moment			
	Stiffness Matrix Method	6		
	Element and Global Stiffness Matrices			
8	Analysis of continuous Beams Ga and insta transformation			
o	Co-ordinate transformationRotation Matrices			
	 Rotation Matrices Transformations of Stiffness Matrices, Load Vectors and 			
	displacements Vectors			
	Finite Element Method using Robot and Revit software	6		
	 Reinforced Concrete Design – 2D frame steel design 	Ũ		
9	 Moving Loads 2D - 3D frame 			
-	• 3D Steel Structure with Steel Connections			
	• 3D Steel Frame with Masses			
	• HibblerRussel C., Structural analysis, 8th SI e	dition, Pearson, 2012.ISBN		
	981-06-8007-4	, ,		
	• Kennet M. Leet, Chia Ming Uang, Anne M	. Gilbert, Fundamentals of		
	Structural Analysis, 4thedition, McGraw-Hill.			
Т	extbook: • C.H.Morris, J.B. Willbur, and S. Utku, Element	ary Structural Analysis, 3th		
	edition, McGraw-Hill,1976			
	Autodesk Robot Structural Analysis			
	Essentials Paperback – October 24, 2014 by	Ken Marsh ISBN-13: 978-		
	0991518111			

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Ар	olied	Civi	il Eng	ineei	ring				
Course Name	Design of Concrete Structures	Course Code		CONS 476								
D		Credit Hours		5		5		5 CTH		CTH		6
Prerequisites		CRH	L	4	Р	2	Т	0				
CRH: C	redit Hours L: Lecture P: Pract	cal T: Tutorial	CTH:	CTH: Contact Hours								

Course description: This course conduct to analyse and design reinforced concrete structures like continuous beams; continuous one-way, two-way and Flat slabs. Analysing and design of stair slabs, Column under eccentrically loads, and R.C. frames, too. Applying the principles, procedures and basic theory of pre-stressed concrete in structural design.

Topics:

- Analysis and Design of R.C. frames.
- Design of Combined R.C. Footings.
- Analysis and Design of retaining walls.
- Principles, procedures and basic Design of Pre-stressed concrete members.
- Structural reinforced Concrete design Project (Apply computer calculation)

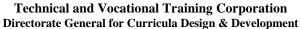
- Review of knowledge gained in Reinforced Concrete Structures (I)
- Analysis and design of continuous beams using moment's coefficients method, and direct design method.
- Analysis and Design of floor systems: continuous one-way, two-way, ribbed and Flat slabs.
- Design of Stair Slabs.
- Design of rectangular R.C. columns under eccentrically loads.

Experiments: if applicable it will support the course topics.

- "Structural Concrete Theory and Design ", Hasson M.N. and Al- Manseer A., 4th edition, John Wiley and Sons, Inc. 2008.
- "Reinforced Concrete- Design theory and Examples ", Third Edition, by Prab Bhatt, Thomas J.MacGinley& Ban sang Choo.
- Code Requirements for Environmental Engineering Concrete Structures and Commentary (ACI 350-06) by ACI American Concrete Institute
- Design of Reinforced Concrete: ACI 318-05 Code, Wiley; 7th edition, Jack C. McCormac and James K. Nelson

Detailed of Theoretical and practical Contents	
Contents	Hours
Review of knowledge gained in Reinforced Concrete Structures (I):	10
Structural design and limit states	
Concepts of structural design for structural elements	
Checking existing sections	
Affecting loads on concrete loads	
• Analysis and design of simply one-solid slab, simply supported beam,	
column under axial load, separate concrete footings.	
Analysis and design of continuous beams:	10
 using moments coefficients method 	
• using direct design method	
• Draw longitudinal and cross-sections for beams, and show details of reinforced steel.	
	Contents Contents Review of knowledge gained in Reinforced Concrete Structures (I): • Structural design and limit states • Concepts of structural design for structural elements • Checking existing sections • Checking existing sections • Affecting loads on concrete loads • Analysis and design of simply one-solid slab, simply supported beam, column under axial load, separate concrete footings. Analysis and design of continuous beams: • using moments coefficients method • using direct design method • using direct design method

Techni


Civil and Architectural Engineering

Applied Civil Engineering

INGDUM OF SAUDI AKABIA	- ANS
ical and Vocational Training Corporation	30°

Directorate General for Curricula Design & Development

• Types of slabs and design methods • Analyze and Design of one-way solid slab • Analyze and Design of two-way solid slab • Analyze and Design of two-way solid slab • Analyze and design of one-way spanning ribbed slabs: design procedure and reinforcement • Analyze and design of Flat Slabs: General code prevision, design for internal and edge panels and reinforcement details. 4 Design of Stair Slabs: 10 • Building regulations • Types of Stair slab 10 • Code design requirements • Example of design of stair slab 10 • Combined axial load and bending moments • Moment strength of column 10 • Moment strength of column einforcement 10 10 • Analysis and Design of R.C. frames: 10 • Combined axial load and cross-sections for frames, and show details of reinforced steel. 10 • Types of combined R.C. Footings: 9 • Types of combined footings 9 • Types of combined footings 9 • Types of combined R.C. Footings: 9 • Types of combined R.C. Footings: 9 • Types of combined footings 9 • Types of combined footings 9 • Types of creating walls 9 • Types of creating	3	Analysis and Design of floor systems:	10
 Analyze and Design of two-way spanning ribbed slabs: design procedure and reinforcement Analyze and design of Flat Slabs: General code prevision, design for internal and edge panels and reinforcement details. Design of Stair Slabs: Types of Stair slabs Code design of retangular R.C. columns under eccentrically loads: Combined axial load and bending moments Moment strength of column Interaction diagram for combined bending and axially load Design of Column reinforcement Analysis and Design of R.C. frames: Moment diagram for consist of formal diagram, Moment diagram Draw longitudinal and cross-sections for frames, and show details of reinforced steel. Types of combined R.C. Footings: Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. Analysis and Design of retaining walls Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. Types of retaining walls Payes of retaining walls Stability against Overturning Stability against Overturning Stability against Overturning Stability against Overturning Design of Cantilever retaining Walls 		• Types of slabs and design methods	
 Analyze and design of one-way spanning ribbed slabs: design procedure and reinforcement Analyze and design of Flat Slabs: General code prevision, design for internal and edge panels and reinforcement details. Design of Stair Slabs: Types of Stair slabs Code design of stair slab Example of design of stair slab Design of rectangular R.C. columns under eccentrically loads: Combined axial load and bending moments Moment strength of column Interaction diagram for combined bending and axially load Design of Column reinforcement Analysis and Design of R.C. frames: Analysis of frames: Normal diagram, Shear diagram, Moment diagram Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 7 Design of Combined R.C. Footings: Types of combined footings Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Overturning Stability against Overturning Design of Cantilever retaining Walls 		 Analyze and Design of one-way solid slab 	
analyze and design of Flat Slabs: General code prevision, design for internal and edge panels and reinforcement details. 10 4 Design of Stair Slabs: 10 • Building regulations 10 • Building regulations 10 • Building regulations 10 • Building regulations 10 • Code design of stair slab 10 • Code design of stair slab 10 • Code design of stair slab 10 • Combined axial load and bending moments 10 • Combined axial load and bending and axially load 10 • Combined for column reinforcement 10 • Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Analysis and Design of cosings 9 10 • Types of combined footings 9 9 • Types of combined footings 9 9 • Types of construction section and elevation with the reinforcement information. 9 • Types of retaining walls		 Analyze and Design of two-way solid slab 	
• Analyze and design of Flat Slabs: General code prevision, design for internal and edge panels and reinforcement details. 10 4 Design of Stair Slabs: 10 • Building regulations 10 • Types of Stair slabs 0 • Code design requirements 10 • Example of design of stair slab 10 5 Design of rectangular R.C. columns under eccentrically loads: 10 • Combined axial load and bending moments 10 • Moment strength of column 10 • Interaction diagram for combined bending and axially load 0 • Design of column reinforcement 10 6 Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 9 • Types of combined R.C. Footings: 9 • Types of combined footings 9 • Types of retaining walls 9 • Types of combined footings 9 • Types of construction section and elevation with the reinforcement information. 9 • Types of retaining walls 9 • Types of retaining walls		• Analyze and design of one-way spanning ribbed slabs: design	
internal and edge panels and reinforcement details. 10 4 Design of Stair Slabs: 10 • Building regulations 10 • Types of Stair slabs 10 • Code design requirements 10 • Example of design of stair slab 10 5 Design of rectangular R.C. columns under eccentrically loads: 10 • Combined axial load and bending moments 10 • Moment strength of column 10 • Interaction diagram for combined bending and axially load 0 • Design of R.C. frames: 10 6 Analysis and Design of R.C. froatings: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Analysis of combined footings 9 10 • Types of combined footings 9 9 • Types of combined footings 9 9 • Types of retaining walls 9 9 • Types of retaining walls 9 9 • Types of retaining walls 9 9 <th></th> <th>procedure and reinforcement</th> <th></th>		procedure and reinforcement	
4 Design of Stair Slabs: 10 • Building regulations 10 • Types of Stair slabs Code design requirements • Example of design of stair slab 10 5 Design of rectangular R.C. columns under eccentrically loads: 10 • Combined axial load and bending moments 10 • Moment strength of column 10 • Interaction diagram for combined bending and axially load 10 • Design of column reinforcement 10 6 Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 9 7 Design of Combined R.C. Footings: 9 • Types of combined footings Procedure to find out the footing dimensions 9 • Types of retaining walls 9 9 9 • Types of retaining walls 9 9 9 • Types of retaining walls 9 9 9 • Types of		• Analyze and design of Flat Slabs: General code prevision, design for	
 Building regulations Types of Stair slabs Code design requirements Example of design of stair slab Design of rectangular R.C. columns under eccentrically loads: Combined axial load and bending moments Moment strength of column Interaction diagram for combined bending and axially load Design of column reinforcement Analysis of frames: Normal diagram, Shear diagram, Moment diagram Draw longitudinal and cross-sections for frames, and show details of reinforced steel. Types of combined footings Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 			
• Types of Stair slabs • Code design requirements • Example of design of stair slab 10 5 Design of rectangular R.C. columns under eccentrically loads: 10 • Combined axial load and bending moments 10 • Moment strength of column Interaction diagram for combined bending and axially load 10 • Design of column reinforcement 10 6 Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 9 7 Design of Combined R.C. Footings: 9 • Types of combined footings 9 • Procedure to find out the footing dimensions 9 • Design of retaining walls: 9 • Types of retaining walls 9 • Types of retaini	4		10
• Code design requirements • Example of design of stair slab 5 Design of rectangular R.C. columns under eccentrically loads: 10 • Combined axial load and bending moments 10 • Combined axial load and bending moments 10 • Combined axial load and bending moments 10 • Moment strength of column Interaction diagram for combined bending and axially load • Design of column reinforcement 10 6 Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 9 7 Design of Combined R.C. Footings: 9 • Types of combined footings Procedure to find out the footing dimensions 9 • Procedure to find out the footing dimensions 9 9 • Types of retaining walls 9 9 9 • Types of retaining walls 9 9 9 • Types of retaining walls 9 9 9 • Types of retaining walls Effective loads 9 • Types of retaining walls Effective loads 9			
• Example of design of stair slab 10 5 Design of rectangular R.C. columns under eccentrically loads: 10 • Combined axial load and bending moments 10 • Moment strength of column Interaction diagram for combined bending and axially load • Design of column reinforcement 10 6 Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 9 7 Design of Combined R.C. Footings: 9 • Types of combined footings Procedure to find out the footing dimensions 9 • Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 9 8 Analysis and Design of retaining walls 9 9 • Types of retaining walls Effective loads 9 • Types of retaining walls Effective loads 9 • Types of retaining walls 9 9			
5 Design of rectangular R.C. columns under eccentrically loads: 10 • Combined axial load and bending moments 10 • Moment strength of column 10 • Interaction diagram for combined bending and axially load 10 • Design of column reinforcement 10 6 Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 9 7 Design of Combined R.C. Footings: 9 • Types of combined footings 9 • Procedure to find out the footing dimensions 9 • Design of retaining walls: 9 • Types of retaining walls: 9 • Types of retaining walls 9 •		Code design requirements	
 Combined axial load and bending moments Moment strength of column Interaction diagram for combined bending and axially load Design of column reinforcement Analysis and Design of R.C. frames: Analysis and Design of R.C. frames: Analysis of frames: Normal diagram, Shear diagram, Moment diagram Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 7 Design of Combined R.C. Footings: Types of combined footings Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 			
 Moment strength of column Interaction diagram for combined bending and axially load Design of column reinforcement Analysis and Design of R.C. frames: Analysis of frames: Normal diagram, Shear diagram, Moment diagram Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 7 Design of Combined R.C. Footings: Types of combined footings Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 	5		10
 Interaction diagram for combined bending and axially load Design of column reinforcement Analysis and Design of R.C. frames: Analysis of frames: Normal diagram, Shear diagram, Moment diagram Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 7 Design of Combined R.C. Footings: Types of combined footings Centroid of combined footings Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Types of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 		 Combined axial load and bending moments 	
• Design of column reinforcement 10 6 Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 9 7 Design of Combined R.C. Footings: 9 • Types of combined footings 9 • Centroid of combined footings 9 • Procedure to find out the footing dimensions 9 • Design the steel reinforcement 9 • Show the construction section and elevation with the reinforcement information. 9 8 Analysis and Design of retaining walls: 9 • Types of retaining walls Effective loads 9 • Types of retaining walls Effective loads 9 • Stability against Overturning Stability against Sliding 9 • Stability against Sliding • Design of Cantilever retaining Walls 9		Moment strength of column	
6 Analysis and Design of R.C. frames: 10 • Analysis of frames: Normal diagram, Shear diagram, Moment diagram 10 • Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 9 7 Design of Combined R.C. Footings: 9 • Types of combined footings 9 • Centroid of combined footings 9 • Design the steel reinforcement 9 • Show the construction section and elevation with the reinforcement information. 9 8 Analysis and Design of retaining walls: 9 • Types of retaining walls 8 9 • Types of retaining walls 9 9 • Types of retaining wall dimensions: Proportioning 9 9		 Interaction diagram for combined bending and axially load 	
 Analysis of frames: Normal diagram, Shear diagram, Moment diagram Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 7 Design of Combined R.C. Footings: Types of combined footings Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 		Design of column reinforcement	
 Draw longitudinal and cross-sections for frames, and show details of reinforced steel. 7 Design of Combined R.C. Footings: Types of combined footings Centroid of combined footings Centroid of combined footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 	6	Analysis and Design of R.C. frames:	10
reinforced steel. 9 7 Design of Combined R.C. Footings: Types of combined footings Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 		• Analysis of frames: Normal diagram, Shear diagram, Moment diagram	
7Design of Combined R.C. Footings: Types of combined footingsCentroid of combined footingsCentroid of combined footingsProcedure to find out the footing dimensionsDesign the steel reinforcementShow the construction section and elevation with the reinforcementShow the construction section and elevation with the reinforcement8Analysis and Design of retaining walls:Effective loadsRetaining wall dimensions: ProportioningStability against OverturningStability against SlidingBearing Pressure AnalysisDesign of Cantilever retaining Walls		• Draw longitudinal and cross-sections for frames, and show details of	
 Types of combined footings Centroid of combined footings Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Types of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 		reinforced steel.	
 Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Types of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 	7	Design of Combined R.C. Footings:	9
 Centroid of combined footings Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Types of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 			
 Procedure to find out the footing dimensions Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Types of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 			
 Design the steel reinforcement Show the construction section and elevation with the reinforcement information. 8 Analysis and Design of retaining walls: Types of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 			
information.8Analysis and Design of retaining walls:• Types of retaining walls• Effective loads• Retaining wall dimensions: Proportioning• Stability against Overturning• Stability against Sliding• Bearing Pressure Analysis• Design of Cantilever retaining Walls		• Design the steel reinforcement	
8Analysis and Design of retaining walls:9• Types of retaining walls• Effective loads• Retaining wall dimensions: Proportioning• Stability against Overturning• Stability against Overturning• Stability against Sliding• Bearing Pressure Analysis• Design of Cantilever retaining Walls		• Show the construction section and elevation with the reinforcement	
 Types of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 		information.	
 Types of retaining walls Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 	8	Analysis and Design of retaining walls:	9
 Effective loads Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 	-	•	-
 Retaining wall dimensions: Proportioning Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 			
 Stability against Overturning Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 			
 Stability against Sliding Bearing Pressure Analysis Design of Cantilever retaining Walls 			
Bearing Pressure AnalysisDesign of Cantilever retaining Walls			
Design of Cantilever retaining Walls			
• Draw details of reinforced steel.		 Draw details of reinforced steel. 	
"Structural Concrete Theory and Design "Hasson M N and A1 Manseer A 4^{th}			er A., 4 th
Textbook: edition, John Wiley and Sons, Inc. 2008.	Textbook:		

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Ар	Applied Civil Engineering				ring
Course Name	Mechanical, Plumbing and Electrical Engineering in building	Course Code		CONS 475				
D		Credit Hours		3 СТН			4	
Prerequisites		CRH	L	2	Р	2	Т	0
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours							

Course description : This course is an overview of the mechanical and electrical systems for building, methods mainly design and implementation. These systems implemented for building such as HAVC, Firefighting, Fire alarm, Elevators, Electrical power systems, lighting, telephone and data systems enssure the quality of living and working. Computer applications should be used to simulate reality via software like AUTOCAD and REVIT.

Topics:

- Building Mechanical Systems.
- Building Electrical Systems.

Experiments: if applicable it will support the course topics.

- Mechanical and Electrical Systems in Buildings, Author: Richard R. Janis, William K. Y. Tao
- Mechanical and Electrical Equipment for Buildings, 10th Edition, Author: Benjamin Stein, John S. Reynolds, Walter T. Grondzik, Alison G. Kwok
- Building Services Engineering (5th, 07), Author: Chadderton, David V

	Detailed of Theoretical And Practical Contents	
	Contents	Hours
1	Understanding Natural and industrial ventilation	4
	Introduction to Mechanical Systems	
2	Mechanical Design. HVAC Cooling and Heating Load Analysis	4
	 Modeling Spaces for Building Load Analysis Creating Spaces 	
	Placing Spaces Creating a Space Properties Schedule	
	Modifying Space Properties Creating Zones	
	Setting Building Construction Options Performing Heating and Cooling Load Analysis	
	Load Analysis Weather Data	
	Outdoor Air Infiltration Sliver Spaces	
	Details Heating and Cooling Loads Report	
	 Performing Conceptual Energy Analysis on Your Building Setting Up the Model 	
	Keeping It Simple Performing Energy Simulation	
	Analyzing Duct and Pipe System Pressure Exporting gbXML Data to Load- Simulating Software	
3	Creating Logical Systems	4
	• Managing Systems Why Are Systems Important?	
	Mechanical Settings System Browser	
	Setting Up Air Systems Understanding Parameters	
	Creating Mechanical Systems Setting Up Piping Systems	
	Understanding Parameters Creating Pipe Systems	

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering Applied Civil Engineering

	Creating Fire-Protection Systems	
	Setting Display Properties of Systems	
	Understanding Child and Parent Relationships in Revit Systems	
	Using System Filters	
4	HVAC Equipment and Delivery	6
	Mechanical Systems and Ductwork	
	Air Distribution Components	
	Mechanical Equipment Components	
	Air Conditioning/Handling Units	
	VAV Boxes	
	• Ductwork	
	• Duct Types and Routing	
	Creating New Duct Types	
	Using Automatic Duct Routing	
	Using Manual Duct Routing	
	 Duct Sizing 	
	 Choosing a Duct Sizing Method 	
	 Using the Duct Routing Tools 	
	• Using the Duct Routing Tools	
5	Plumping	6
	Mechanical Piping	Ŭ
	Mechanical Pipe Settings	
	Creating Piping Systems	
	 Creating Pipe Types 	
	 Defining Fitting Angles 	
	 Selecting Fittings for Routing Preferences Choosing Pipe Materials and Sizes 	
	 Adjusting the Pipe Sizing Table Using the Fluids Table 	
	 Pipe Routing Options 	
	 Automatic Pipe Routing 	
	 Manual Pipe Routing Pipe Fittings 	
	Using Pipe Fitting Controls	
	Placing Valves	
	Adding Piping	
	Defining Systems Visibility through Filters The Bottom Line	_
7	Elevators and Escalator Systems Natural movement and industrial movement	5
	Movement anchored and horizontal movement in buildings	
	Components of elevators	
	Components of Escalator	
8	Other Mechanical Systems	8
0	Introduction to Electricity	0
	Electrical Design Lighting	
	Efficient Lighting Design	
	• Spaces and Lighting	
	The Reflected Ceiling Plan	
	Lighting Worksets	
	 Lighting Analysis 	
	 Hosting Options for Lighting Fixtures and Devices 	
	 Lighting Fixtures in a Ceiling 	
	 Lighting Fixtures in Sloped Ceilings 	
L		

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

	• (Ceiling Changes		
	• (Overhead Fixtures in Spaces with No Ceiling		
	• `	Wall-Mounted Lights		
	•	Switches		
	•	Site Lighting		
		The Site Plan		
	•	Site Lighting Layout		
		Site Lighting Analysis		
10		es of electric grounding Electrical Power System Lighting	5	
	_	Modeling Methods for Power and Systems Devices		
		Using Annotation Symbols		
		Using Face-Hosted Families Avoiding Interference of Symbols		
		Creating Circuits		
		Placing Devices and Equipment Connections		
		Disconnect Switches		
		Distribution Equipment and Transformers		
		Switchboards		
		Panels		
		Other Equipment		
		Creating Power Distribution Systems		
		Power Diagrams		
		Fips for Creating Power Diagrams		
		Creating a Fire Alarm System Model		
		•		
		Fire Alarm Riser Diagram Fire Alarm Diagram Using Drafting Tools and Symbols		
		•		
		Modeling Conduit and Cable Tray		
		Defining Electrical Settings Placing Conduit in a Model		
		e		
		Placing Cable Tray in a Model		
11		Creating Family Types	E	
11		rm Systems Telephone, Data and Sound System	5	
		Creating Fire-Protection Systems		
10		rire Fighting Systems	~	
13	-	ter applications Project in Mechanical and Electrical System	5	
		AUTOCAD and REVIT MEP (Mechanical, Electrical, and Plumbing) software		
	•	HVAC for big building		
		1-Mechanical and Electrical Systems in Buildings		
		Author: Richard R. Janis, William K. Y. Tao		
	2- Mechanical and Electrical Equipment for Buildings, 10 th Edition			
		Author: Benjamin Stein, John S. Reynolds, Walter T. Grondzik, Alison G. K.	WOK	
Textbook:		3- Building Services Engineering (5th, 07)		
		Author: Chadderton, David V		
		4- Building Services Handbook [Paperback]		
		Author: Fred Hall, Fred Hall (Author)		
		5-Autodesk Revit 2018 MEP Mechanical Review for Professional Certification	1.	
		Autodesk Authorized Publisher, Author: Autodesk® Revit®		

Department	Civil And Architectural Engineering	Major	Applied Civil Engineering					ring
Course Name	Highway Engineering	Course Code		CONS 464				
D	CONG 211	Credit Hours	4			СТН		6
Prerequisites	CONS 311	CRH	L	2	Р	4	Т	0
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours							

Course description: The course is concerned with the fundamentals of highway and pavement engineering. It introduces the design process of roads and intersections, including horizontal and vertical alignment design, cross-sections and earthworks. The second half of this strand deals with pavement design and evaluation. Topics include pavement composition, pavement materials, asphalt mix design, the pavement thickness design and, defects in Flexible pavements and, failures in rigid pavements.

Topics:

- Terminology used in the design/construction of highways and roadway pavements.
- Application of analytical Methods in the Geometric design of a highway Project
- Drainage design, soil improvement and earthwork for roadways and highways.
- Properties of pavement materials, pavement mix design and thickness for asphalt and concrete pavements.
- Pavements evaluation.

Experiments: If applicable, it will support the course topics.

- Traffic and Highway Engineering, Fourth Edition, Nicholas J. Garber, Lester A. Hoel, University of Virginia. 2009, Cengage Learning, 1120 Birchmount Road, Toronto ON M1K 5G4 Canada
- O'Flaherty, C.A. (ed) Highways: The Location, Design, Construction and Maintenance of Road Pavements. Butterworth Heinemann.

	Detailed of Theoretical Contents	
	Contents	Hours
1	History of Road Construction, Highway Development in Saudi Arabia.	2
	Highway Development Programmers at National Level in Saudi Arabia.	
2	The Highway planning process and principles of route location.	2
3	Factors controlling roadway and Highway alignment .Engineering surveys for alignment - Conventional methods and Modern methods (Remote sensing, GIS and	2
	GPS techniques)	
4	Geometric design of roadways and Highways.	2
5	Roadways and Highways drainage.	2
6	Classification, Improvement and Stabilization of soil and Earthworks for roadways	2
	and Highways.	
7	Sources description properties and uses of Bituminous binders.	3
	Asphalt mix design.	
	Asphalt plants.	
8	Design of flexible pavement by gyratory compaction	3
9	Design of rigid Pavements.	3
	Pavement management.	
10	Types of defects in Flexible Pavements, failures in Rigid Pavements and Pavement Evaluation.	3

Civil and Architectural Engineering

Applied Civil Engineering

11	Factors for pavement	nt Sustainability 2
	Textbook:	O'Flaherty, C.A. (ed) Highways: The Location, Design, Construction and Maintenance of Road Pavements. Butterworth Heinemann Design of Highway Bridges, Authors: Richard Barker & Jay Puckett, Publisher: Wiley Interscience.

		Detailed of practical Contents	
		Contents	Hours
1	Rotational Visco	osity	3
2	Asphalt extraction	on from pave analyser	4
3	LosAngelos test	5	
4	Dynamic fragme	5	
5	Ductility of Asp	5	
6	Dynamic Shear	5	
7-8	Bending Beam H	Rheometer.	5
9-10	Gyratory Compa	action test.	5
11-12	Wheel Trucker t	est	5
13	Fire point test		5
14	Flash point test		5
Textbook:		O'Flaherty, C.A. (ed) Highways: The Location, Design Maintenance of Road Pavements. Butterworth Heinema	

Applied Civil Engineering

Department		nd Archite		Major	Ар	Applied Civil Engineering				
Course Name		iced Surve		Course Code		CONS 341				
D			Credit Hours	3		СТН			6	
Prerequisites	IVI	IATH 301		CRH	L	2	Р	4	Т	0
CRH: Credit Hours L: Lecture P: Practica				T: Tutorial	CTH:	Conta	ct Ho	ours		•

Course description:

This course covers basic surveying topics that construction engineer deal with regularly. These topics include: cross – sections, leveling and global poisoning system. Trainees will handle these topics theoretically and practically.

Topics:

- Longitudinal and cross sections
- Leveling net
- Applications of Global Positioning System

Experiments: if applicable it will support the course topics.

References : Fundamentals of Surveying by S. K. Roy.

	Detailed of Theoretical Contents				
	Contents	Hours			
1	Introduction to survey	8			
	• Definitions and types of surveying				
	• Topographic maps and characteristics of contour lines				
	Principle of levelling surveying				
	• Types of laveling				
2	Longitudinal and cross sections:	8			
	• leveling work required along longitudinal and along cross sections of				
	the project.				
	• Computation of designed project levels along center line.				
	• Compute and draw Longitudinal and cross sections along the project.				
	• Compute fill and cut volumes by using software.				
3	Leveling net:	8			
	• requirements leveling net.				
	• Methods of leveling nets.				
	• Land leveling on average level.				
	Compute and draw contour lines.				
4	Applications of Global Positioning System:	8			
	• Main components of the system.				
	Coordinate systems.				
	Observation methods.				
	• Errors resources.				
Te	xtbook: Surveying for Engineers by: John Uren and Bill Price				

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Applied Civil Engineering

	Detailed of practical's Contents	
	Contents	Hours
1	Introduction to survey Setting of instruments (level, total station) Find the level of points by using surveying instruments	6
2	Longitudinal and cross sections:	14
	• Perform field leveling along longitudinal section (Center line) and along cross sections of road.	
	Compute designed project levels along center line.	
	• Compute and draw Longitudinal and cross sections along the project.	
	• Compute fill and cut volumes by using Magnet office and sierra soft software.	
3	Leveling net:	14
	• Determine borders of the project area, and perform survey measurements of the border lines.	
	• Divide the area of the project into a net of squares.	
	• Determine levels of points of intersections along squares net.	
	• Draw area of the project with appropriate scale.	
	• Write levels on the map points.	
	 Compute quantities of cut and fill on the project area based on the average level by using software. 	
4	Applications of Global Positioning System:	18
	• Get to know available GPS receivers and applied program.	
	• Setting GPS Receivers for operations.	
	• Performing planimetric Surveying using (Stop and Go Method)	
	• Transferring data from receivers to computer, and performing	
	data processing and adjustment and computing coordinates and drawing map.	

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Арр	Applied Civil Engineering				
Course Name	Graduation Project	Course Code		CONS 490				
D		Credit Hours		4		CTH		6
Prerequisites		CRH	L	2	Р	4	Т	0
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours							

Course description : Graduation project take in consideration a practical idea which be concretized in reality. This project must include prerequisites of all software's used in architectural and civil engineering to simulate the mechanical behaviour of such structure. For instance, the elaboration of prototype or working in existing project in collaboration with industry should be considered as the main output of the project. Furthermore, the outcomes of this project must be a report (technical or academic) including the experiment labs and the results of the developed model.

Topics :

- Literature review.
- Project schedule and management.
- Project execution
- Validation of the project and elaboration of report

Experiments: If applicable, it will support the course topics.

	Detailed of Theoretical And Practical Contents						
		Contents	Hours				
1	Literature review	V	10				
2	Project schedule	and management	10				
3	Project execution	n	22				
4	Validation of the	e project and elaboration of report	10				
	Textbook:						

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Applied Civil Engineering						
Course Name	Computer applications in construction management	Course Code		CONS 463					
D	CNDL 402		3		СТН		4		
Prerequisites	GNRL 402	CRH	L	2	Р	2	Т	0	
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Course description :

Training on Subscription software is a comprehensive project review solution that supports coordination, analysis, and communication of design intent and constructability. Multidisciplinary design data created in a broad range of Building Information Modeling (BIM), digital prototype, and process plant design applications can be combined into a single integrated project model. Interference management tools help design and construction professionals anticipate and avoid potential problems before construction begins, minimizing expensive delays and rework. Manage combines model coordination with project quantities and schedule to deliver simulation and analysis of time and cost. Entire project models can be published and freely viewed .

Topics :

- Navisworks Manage software.
- Integration with Autodesk BIM 360 Glue
- Bidirectional workflow between Navisworks and Glue
- Quantification
- Add quantification from an aggregated model
- Create more realistic results.
- Autodesk ReCap Point Cloud Support
- Supports more formats and access to large data sets.
- Model File and Data Aggregation

Experiments: if applicable it will support the course topics.

- Autodesk Navisworks 2018 Using Autodesk Navisworks in a BIM Workflow: Autodesk Authorized Publisher, Pearson, DEEPAK MAINI.
- Project Management Training, Pearson, Bill shacke lford.

	Detailed of Theoretical And Practical Contents				
	Contents	Hours			
1	Introduction BIM	2			
2	 Selection Tree and Selecting Objects Setting Selection Resolution and Sorting Structures 3D Model Review Hiding Objects and Overriding Materials Hide Items & Change Object Color and Transparency Object Properties Add a New Custom Property Tab and Property Enable and Customize Quick Properties Enable and Customize Quick Properties Measuring and Moving Objects Using the Measuring and Move Tools 	4			

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

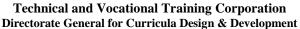
	Selection and Search Sets	
	Selection and Search Sets	
	Add and Organize Viewpoints	
	Comments, Redlining, and Tags	
	 Working with Animations in Navisworks 	4
	• Sectioning	
	• All copying and reuse strictly forbidden.	
3	View and Add Links	
5	Comparing Models	
	 Navisworks Real-Time Rendering 	
	Compare Two Model Files	
	Setting Lighting and Rendering Options	
	• TimeLiner	4
	TimeLiner Overview	
	Run a Basic TimeLiner Simulation	
	Creating Tasks	
4	Creating Tasks Manually	
	• Gantt View	
	Working with a Gantt View	
	Import Tasks from External Project File	
	Importing Tasks	
	Configuring and Defining a Simulation	4
	Customizing a Simulation	
	Simulation Export	
5	Exporting a TimeLiner Simulation	
	• Animator	
	Animator Overview	
	Creating a Basic Animation	
	Adding a Camera and Camera Viewpoints	4
	Manipulate Geometry Objects in an Animation Set	4
6	 Manipulating Geometry Objects in an Animation Set Section Plane Sets 	
U		
	 Adding a Section Plane Set and Captured Sectioned Views Controlling Animation Scene Playback 	
	 Adjust the Way an Animation Scene Plays 	4
	 Adjust the way an Animation Scene Plays Scripter 	
	 Scripter Overview 	
	 Scripter Overview Creating and Managing Scripts 	
7	 Create and Organize Scripts 	
	 Creating and Configuring Events 	
	 Create and Configure Events 	
	 Creating and Configuring Actions 	
	 Create and Configure Actions 	
8	Quantification	4
	Quantification Overview	-
	 Setting up a Quantification Project 	
	 Item and Resource Management 	
9	Sample provided by ASCENT for review only	4

All copying and reuse strictly forbidden

Setting up a Quantification Workbook

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

•


•

3D Model and Virtual Takeoff 4 • Managing Takeoff Data • 10 Creating and Working with 3D Model Takeoff Data Creating and Working with 2D Takeoff Data • Analyzing Changes • **Exporting Takeoff Data** 4 • 11 Analyzing and Updating Takeoff Data • 4 **Clash Detective** • **Clash Detective Overview** • **Conduct Simple Clash Tests** • **Clash Results** • 12 Clash Testing, Viewing Results, & Adding Comments • **Clash Test Reporting** • Clash Testing and Creating a Report • Working with Clash Tests • Clash Testing After Clashes are Corrected • **Exporting and Importing Clash Tests** • Exporting, Importing, and Custom Clash Tests • Laser Scan Data Clashing • Clash Testing Geometry Against Laser Scan Data • **Clash Testing and Moving Objects** 4 • **Time-Based Clashing** • Conducting and Reporting a Time Based Clash Test • Autodesk Rendering • Autodesk Rendering Overview 13 Adding Materials to a Model • **Creating and Editing Materials** • Material Mapping • Adding Materials to a Model • Adding Lights to a Model • Sun and Sky Lights • 2 Control • Planes • Ground 14 Photorealistic Rendering Data Tools • Database Support (Data Tools) • Linking to an External Database **Textbook:** Mastering Autodesk Navisworks, Pearson, Jason Dodd & Scott Johnson.

Electives courses

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Applied Civil Engineering				ing	
Course Name	Design of Steel Structures	Course Code	CONS 431					
D	Structural Analysis	Credit Hours		3		CTH		4
Prerequisites		CRH	L	2	Р	2	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Course description : In this course, trainee get to know how to analyze and design tension and compression steel members, Columns under eccentric loadings, Column bases and footings, Beams for Flexure and Shear, bolted and welded Connections, Structural Steel design Project; Apply computer calculation using ROBOT STRUCTURAL ANALYSIS software through Trusses 2D, 3D module and Frame 2D, 3D module.

Topics:

- Design of welded Connections.
- Design of Beams for Flexure and Shear.
- Industrial building Project.
- Structural Steel design Project (Apply computer calculation)

- Review of knowledge gained in Steel Structures (I)
- Design of Tension and Compression members: Analysis and design of roof Trusses.
- Design of Columns under eccentric loadings.
- Design of Column bases and footings.
- Design of bolted Connections.

Experiments: if applicable it will support the course topics. **References :**

- "Design of Steel Structures", 3rd Edition, by Edwin, H. Gaylord, Jr., Charles, N. Gaylord & James, E. Stallmeyer; McGraw-Hill, 1992.
- Steel Structures Design: ASD/LRFD Code, McGraw-Hill Education 1st Edition, Alan Williams,
- "Applied Structural Steel Design ", by L. Spiegel & G. F. Limbrunner.
- "Simplified Design of steel structures "7th Edition, by James Ambrose, John Wiley & sons,Inc; 1997.

	Detailed of Theoretical and practical's Contents					
	Contents	Hours				
1	Review of knowledge gained in Steel Structures (I):	4				
	Mechanical properties of steel					
	• The manufacturing of steel structures					
	 Advantages and disadvantages of steel structures 					
	Principles of limit state design					
2	Design of Tension and Compression members:	6				
	Behavior of tension/compression members					
	• Design strength of tension/compression members					
	Design Procedure					
	Analysis and design of roof Trusses					
3	Design of Columns under eccentric loadings:	6				
	Types of eccentric loading of columns					
	Bending moment for eccentricity					
	• Superposing The stresses due to centric load and Couple					
	 Design of eccentric loading: the Secant Formula. 					

Design of Column bases and footings:

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

4

6

Types of column bases Slab Base Gusset base • Design of welded column bases. 5 **Design of bolted Connections:** 6 Advantages and disadvantages of bolted connections Specifications for spacing and edge distances of bolt holes • Assumptions in design of bearing bolts • Design strength of bearing bolts • Design criteria for bolt subjected to combined shear and tension **Design of welded Connections:** 4 6 • Advantages and disadvantages of welded connections Important Specifications for welding Design stresses in welds • Reduction in design stresses for long joints 7 **Design of beams for Flexure and Shear:** 6 Plastic moment carrying capacity of a section Classification of cross-sections Design procedure • Bending strength of a laterally supported beam Shear strength of a laterally supported beam **Deflection** limits Design Principles of bolted beam connections • Design Principles of welded beam connections **Industrial building Project:** 8 6 • Modeling of essential structure systems Analyze of elements and components of the steel structure Methods of shifting and transferring loads • Understand how the elements of the steel structures were designed. 9 **Structural Steel design Project (Apply computer calculation):** 8 The project let the trainee practice the skills which he had gained during this course. Study subject of the project and determine its goals, and its benefits in work market. Determine required work in the project Analyze and Design essential elements of the project steel structure using ROBOT STRUCTURAL ANALYSIS software through the Trusses 2D -3D module; and Steel Structure Deseign Module. Applied Structural Steel Design ", by L. Spiegel & G. F. Limbrunner. " Simplified Design of steel structures " 7th Edition, by James Ambrose, **Textbook:** John Wiley & sons, Inc; 1997.

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

Civil and Architectural Engineering

المؤسسة العامة للتدريب التقني والمهني Technical and Vocational Training Corporation

Department	Civil And Architectural Engineering	Major	Ар	plied	Civ	il Eng	inee	ring
Course Name	Design of Special Concrete	Course Code		CONS 433				
D	Design of Concrete Structures	Credit Hours		2		CTH		2
Prerequisites	6	CRH	L	2	Р	0	Т	0
CRH: C	redit Hours L: Lecture P: Practical	T: Tutorial	CTH:	Conta	ct Ho	ours		

Course description : Design and construction of pre-stressed concrete sections. This course will include basic concept of pre-stressing, pre-stressing technology, steel and concrete materials, computation of fibre stresses, pre-stress losses, flexural and shear behavior at service loads and ultimate loads, deflection and crack control, load balancing, anchorage zone, design and construction integration, and use STRUCTURAL BRIDGE design software to analyze and design pre-stressed concrete bridge.

Topics :

- Pre-stressed concrete section
- Pre-stressing technologies
- Fibre stress
- Anchorage zone

Experiments:

- Prestressed Concrete Fifth Edition Upgrade: ACI, AASHTO, IBC 2009 Codes Version (5th Edition) 5th Edition, Edward G. Nawy
- Prestressed Concrete Analysis and Design Third Edition. Naaman, Techno Press; 3rd edition (2012), Antoine E
- Prestressed Concrete Bridges (Structures and Buildings) 2nd Revised Edition, ICE Publishing; (June 30, 2011) Nigel Hewson
- The Design of Prestressed Concrete Bridges, Concept and Principle, Taylor and Francis, London and New York, Robert Benaim

	Detailed of Theoretical And Practical Contents				
	Contents	Hours			
	Basic Principle of Prestressing :	2			
	- Types of pre-stressed concrete structures				
1	- Advantages of Prestressed Concrete				
	- Materials				
	Methods of Prestressing				
	Design of PSC Members:	2			
2	- Basic Principle of Prestressed Concrete.				
2	- Stresses in Prestressed Members				
	- Minimum Section Modulus				
	Ultimate Limit State Design of PSC:	2			
	- Losses in Pre-Tensioned PSC				
3	- Losses in Post-tensioned PSC				
	- Ultimate Moment Capacity				
	- Ultimate Shear Design				
	Prestressing for statically determinate beams	2			
	- Section properties				
4	- Bending moments, bending stresses and shear force				
-	- Centre of pressure				
	- Calculation of the prestress force				
	- Bonded and unbonded cables				
5	Pre-stressing for continuous beams	2			
3	- Details of the sample bridge deck				

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

	Section momenties	
	Section propertiesBending moments	
	 Dending moments Considerations on the choice of tendon size 	
	 Calculating the prestress force 	
	 Pres-tress scheme 	
	Articulation of bridges and the design of substructure	2
	- Design parameters	4
	- Concrete hinges	
6	- The articulation of decks with mechanical bearings	
	 Deck on laminated rubber bearings 	
	 Integral bridges and examples of bridge articulation 	
	The general principles of concrete deck design	2
	- Transverse bending	2
7	 Transverse distribution of live loads 	
/		
	 Material quantities and costs Choice of most economical span 	
	The design of bridge deck components	2
	- Side cantilevers	4
8		
0	 Top and Bottom slabs Webs 	
	- Expansion joints Precast beams	2
9		2
9	- Standard precast beams	
	- Customised precast beams	2
	Solid slabs, voided slabs and multi-cell box girders	2
10	- Slab bridges, general Reinforced concrete slab bridges	
10	- Reinforced concrete slab bridges	
	- Prestressed concrete slab bridges	
	- Solid slab portal bridges	2
	Cable-supported decks - Undertrussed and Cable-stayed bridges	2
1	 Stressed ribbon and Steel cable catenary bridges 	
	 Flat suspension bridge 	
	The construction of girder bridges	2
	 Cast-in-situ span-by-span construction of continuous beams 	4
	 Precast segmental span-by-span construction of continuous beams 	
	 Cast-in-situ balanced cantilever construction 	
12		
14	 Precast segmental balanced cantilever construction Progressive erection of precast segmental decks 	
	- Construction programme for precast segmental decks	
	- Incremental launching Prefebrication of complete spans	
	Prefabrication of complete spans Structural Pro strugged Concrete for Preidge Project using POPOT	2
12	- Structural Pre-stressed Concrete for Bridge Project using ROBOT STRUCTURAL ANALYSIS and STRUCTURAL BRIDGE DESEIGN acftware	2
13	STRUCTURAL ANALYSIS and STRUCTURAL BRIDGE DESEIGN software	
	- Prepare drawings and write technical report using computer.	
	The Design of Prestressed Concrete Bridges, Concept and Principle, Ta	

Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

chnical and Vocational Training Corpora

Civil and Architectural Engineering

Applied Civil Engineering

Department	Civil And Architectural Engineering	Major	Ар	Applied Civil Engineering				
Course Name	Building Sustainability	Course Code	CONS 486					
D		Credit Hours		2		CTH		2
Prerequisites		CRH	L	2	Р	0	Т	0
	nadit Hauma I a Lastura Du Dusatia d	T. Testadial						

CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours

Course description: The built environment is a major source of society's environmental impact, and is a major opportunity to find solutions. Recent attention to "green construction" emerges in many domains including energy

Systems, water use, construction processes, architectural design, site planning and brownfield development, just to name a few. At present, environmental issues can be considered in seemingly unlimited areas of the design and construction process. Yet, advances are slow. General perceptions assert that green construction costs too much money; that the technologies are not available for meaningful change, and opportunities are rare.

Topics:

- Ethic and Sustainability
- Ecological design and Economics
- Green Building Assessment
- The green Building Design Process
- Energy and Carbon Footprint Reduction
- Indoor Environmental Quality

Experiments:

- Kibert, C. (2005) Sustainable Construction: Green Building Design and Delivery
- *Green Buildings and the Bottom Line* (Oak Brook, IL: Building Design + Construction). Go to: http://www.bdcnetwork.com/article/CA6390371.html

	Detailed of Theoretical And Practical Contents					
	Contents					
 Ethic and Sustainability: Sustainable development and sustainable construction: Sustainable development requires a more extensive set of ethical principles to guide behavior because it addresses relationships between generations, calling for what is sometimes referred to as intergenerational justice. 						
	 Ethics between people by providing rules of conduct that are generally agreed to govern the good behavior of contemporaries. 					
2	 Ecological design and Economics: Each approach seeks to acknowledge, facilitate, and/or preserve the interrelationship of natural system components and buildings. In doing so, particular questions and problems recur, such as: What can be learned from nature and ecology that can be applied to buildings? Should ecology serve as model or metaphor for green buildings? How can natural systems be directly incorporated to improve the functioning of the built environment? How can the human-nature interface best be managed for the benefit of both systems? When does the natural system metaphor break down and is another approach required? 	5				

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

-		
3	 Green Building Assessment: The most demanding of all building assessment systems is the Living Building Challenge. Its intent was to push the envelope of high-performance building much further than it was likely to be pressed by LEED and other building assessment systems. The Living Building Challenge is based on a few simple but very powerful concepts, among them that a building should produce as much energy as it consumes, provide all the required water, and process all its sewage. 	5
4	 The green Building Design Process: This chapter addresses the high-performance green building delivery system as a distinctly identifiable construction delivery system, analogous to individually recognized design-build systems. A hallmark of the high-performance green building delivery system is the high level of coordination and integration required of the design and construction team members. Additional measures, such as building commissioning and the charrette, are necessary to fully implement this new delivery system. Performance-based design contracts provide financial incentives to implement certain sustainable design features, such as relying on nature for some building services, thus enabling a downsizing of mechanical and electrical systems to reduce energy consumption and cost. 	5
5	 Energy and Carbon Footprint Reduction: Perhaps of all the challenges facing the development of high-performance green buildings, significantly reducing the energy and carbon footprints of the built environment is the most daunting. The environmental impacts of extracting and consuming nonrenewable energy resources such as fossil and nuclear fuels are profound. Pronounced land impacts from coal and uranium mining, acid rain, nitrous oxides, particulates, radiation, ash disposal problems, and long-term storage of nuclear waste are just some of the consequences of energy consumption by the built environment. Building energy consumption in the United States is at about the same scale as energy consumption by automobiles, with about 40 percent of primary energy being consumed by buildings and about the same quantity by transportation.1 In fact, much automotive energy consumption is caused by the placement of buildings on the landscape. 	3
6	Indoor Environmental Quality: Providing excellent indoor environmental quality (IEQ) has emerged as one of the key goals in the design of high-performance green buildings, on a par with energy efficiency and ecological system restoration.	3

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation

Directorate General for Curricula Design & Development

Training Corporation

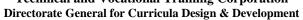
Textbook: Kibert, C. (2005) Sustainable Construction: Green Building Design and Delivery

Department	Civil And Architectural Engineering	Major	Ар	Applied Civil Engineering					
Course Name	OSHA/Neibosh/NFPA safety building	Course Code		CONS 404					
D		Credit Hours	2 CTH 2					2	
Prerequisites		CRH	L	2	Р	0	Т	0	
CRH: C	CRH: Credit Hours I: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Course description: On completion of this element, candidates should be able to demonstrate understanding of the content through the application of knowledge to familiar and unfamiliar situations. In particular they should be able to:

- Outline the scope and nature of occupational health and safety
- Explain the moral, social and economic reasons for maintaining and promoting good standards of health and safety in building
- Explain the role of national governments and international bodies in formulating a framework for the regulation of health and safety in building.

Topics:

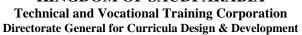

- Explain the purpose of, and procedures, for health and safety auditing in building
- Explain the purpose of, and procedures for, investigating incidents (accidents, cases of work-related ill-health and other occurrences) in building
- Describe the legal and organizational requirements for recording and reporting incidents
- Explain the purpose of, and procedures for, regular reviews of health and safety performance in building.

Experiments:

- Syllabus summary NEBOSH International General Certificate in Occupational Health and Safety (January 2013 specification)
- "Occupational Health and Safety (OH&S) Management Systems, Standards and Certificates 2017"
- National Fire Protection Association (NFPA), 2019

	Detailed of Theoretical And Practical Contents					
		Contents	Hours			
Ī		Sustainability concept in building : Criteria such as sustainability, energy efficiency	3			
	1	and healthfulness are considered. Green or sustainable building is the practice of creating healthier and more resource-efficient models of construction, renovation, operation,				
		maintenance, and demolition.				

Technical and Vocational Training Corporation



Civil and Architectural Engineering

Applied Civil Engineering

2	Building Management : to know the hard and soft services of a built structure. To describe the management of two types of building: residential and commercial.	3		
3	- NEIDOSh Standard - NFPA standard			
4	Design fire-safe buildings and products : Planning for fire protection in/around a building involves knowing the four sources of fire: natural, manmade, wildfire and incidental and taking an integrated systems approach that enables the designer to analyze all of the building's components as a total building fire safety system package. The analysis requires more than code compliance or meeting the minimum legal responsibilities for protecting a building; that is, building and fire codes are intended to protect against loss of life and limit fire impact on the community and do not necessarily protect the mission or assets, or solve problems brought upon by new projects with unique circumstances.			
5	Improve structure safety performance: This part aims to conduct an investigation and comparison of safety performance and critical safety issues between green and conventional building construction projects, and to propose a series of feasible solutions to improve the safety performance in green building construction projects.			
6	 Maintain building safeguards: Review each Physical Safeguard standard and implementation specification listed in the Security Rule. Discuss physical vulnerabilities and provide examples of physical controls that may be implemented in a covered entity's environment. Provide sample questions that covered entities may want to consider when implementing the Physical Safeguards. 			
Textbook: National Fire Protection Association (NFPA), 2019				

Credit Hours

CRH

Civil and Architectural Engineering

Applied Civil Engineering

3

CTH

2

Ρ

4

0

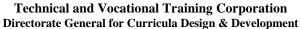
Т

	Technica) and Voca	tional Iraining Corporation	0 0
Department	Civil And Architectural Engineering	Major	Applied Civil Engineering
Course Name	Advanced Concrete Technology	Course Code	CONS 435

Prerequisites

2 L T: Tutorial CRH: Credit Hours P: Practical CTH: Contact Hours L: Lecture

Course description : Analysis and design of unreinforced and reinforced masonry: non-bearing walls, bearing walls, shear walls, masonry building systems


Topics :

- Brik's properties •
- Prescriptive design of masonry wall systems •
- Properties of Masonry •
- Masonry design code •

Experiments:

- TH1199.B85 2011: MSJC 2011 Building Code Requirements and Specifications for Masonry • Structures, TMS 402-11/ACI 530-11/ASCE 5-11. The Masonry Society, Boulder, CO.
- TA670.M344 2003: Masonry Designers' Guide, 5th Edition. The Masonry Society, Boulder, . CO.
- TA683.T25 2010: Design of Reinforced Masonry Structures, Narendra Taly. 2010. •

Detailed of Theoretical And Practical Contents					
	Contents Hours				
1					
2	 Brik's properties Compressive strength Absorption Frost resistance Dimensional changes Fire resistance 	14			
3	 Prescriptive design of masonry wall systems Cellular wall systems Simple or double cross-wall systems Complex arrangements 	14			
4	 Properties of Masonry Strength of Masonry in combined compression and shear The tensile strength of masonry 	12			
5	 Masonry design code The basis and structure of BS5628 of ordinary Masonry The basis and structure of BS5628 of reinforced and prestressed Masonry 	8			
Text	 2009 Design of Reinforced Masonry Structures (Sixth Edition) by Gregg E. Brandow, Ekwueme, C.G. & Hart, G.C.; Concrete Masonry Association of California and Nevada, 2011. MSJC 2011 Building Code Requirements and Specifications for Masonry Structures, TMS 402- 11/ACI 530-11/ASCE 5-11. The Masonry Society, Boulder, CO. 				

Civil and Architectural Engineering

Applied Civil Engineering

	Department	Civil And Architectural Engineering	Major	Арр	olied	Civil	Engi	neer	ing
	Course Name	Utilising Solid wastes in construction	Course Code		CONS405				
	Prerequisites		Credit Hours CRH	T	3	Р	CTH	т	4
-	CRH. C		T: Tutorial (²		2	1	U

Course description: The main objective is to investigate the potential use of various solid wastes for producing construction materials. To safeguard the environment, many efforts are being made for the recycling of different types of solid wastes with a view to utilizing them in the production of various construction materials. This course focuses the environmental implications caused by the generation of various solid wastes, and highlights their recycling potentials and possible use for producing construction materials.

Topics:

- Demolition construction waste management
- Recycling construction waste management
- Reusing construction waste management
- Sustainable construction using wastes

Experiments:

References :

Sustainable Construction Waste Management. Available from:

https://www.researchgate.net/publication/308327621_Sustainable_Construction_Waste_Management

Detailed of Theoretical And Practical Contents				
	Contents	Hours		
1	Introduction	4		
2	Demolition construction waste management: Construction and demolition (C&D) materials are generated when new building and civil-engineering structures are built and when existing buildings and civil-engineering structures are renovated or demolished (including deconstruction activities). Civil-engineering structures include public works projects, such as streets and highways, bridges, utility plants, piers, and dams.	14		
3	 Recycling construction waste management: by practicing source reduction, salvaging, recycling and reusing existing materials, and buying used and recycled materials and products. The following sections provide more information about: How can practice source reduction by using less materials and generating less waste from your project; What deconstruction means and what C&D materials can salvage for reuse during deconstruction; How C&D materials can be recycled and how can find a recycler to recycle The economic, aesthetic and environmental benefits can be achieved by buying used and recycled products 	12		
4	Reusing construction waste management: Let to know the ability to reuse materials salvaged from demolition and building sites for reuse and recycling depends on:	12		

	 local recycling facilities market demand quality and condition of materials and components time available for salvage emphasis put on reuse and recycling. 				
5	indust planni renova impler and r	inable construction using wastes: The generation of waste in the construction ry needs to be examined by looking into the whole life cycle of a building – ing, design and procurement; construction; occupancy; operation, maintenance, ation and demolition. In this context, managing construction waste is mented by eliminating waste where possible, minimising waste where feasible eusing materials which might otherwise become waste. Waste management e construction industry should adopt the waste management hierarchy.	10		
Text	 Sustainable Construction Materials, Recycled Aggregates: by Ravindra H OBE, Jorge de Brito, Rui V. Silva, Chao Qun Lye No Waste: Managing Sustainability in Construction Hardcover – 28 Oct Uly Ma 				

Appendix Laboratory Equipment, Workshops and Laboratories

No.	Laboratory name / workshop	Capacity of training	Number of trainers	Training courses benefiting from the laboratory / workshop / lab
1	Concrete Lab	5	15	Building Materials
2	Soil Lab	5	15	Geotechnical Engineering
3	Pavement Lab	5	15	Highway Engineering
4	Drawing Lab	5	20	Architectural drawing
5	Structural Lab	5	20	Structural drawing
6	Skechtup lab	2	5	Graduation project

List of Detailed Equipment for Each Laboratory, Workshop or Lab

No.	Pavement lab	Quantity
1.	Gyratory compactor	1
2.	Dynamic Shear Rheometer DSR	2
3.	Bending Beam Rheometer BBR	3
4.	Rotational Viscosity RV	4
5.	Los Angolos Test	3
6.	Wheel trucker Hamburg	1
7.	Ductility Test of Asphalt	1
8.	Pave Analyser	2
9.	California Bearing Ratio CBR	1

No.	Soil Lab	Quantity
1.	Proctor	2
2.	Hydrometer and Sieve Analysis	2
3.	Casagrande for attaerberg limits	3
4.	Direct shear test	1
5.	Triaxial shear test	1
6.	Consolidation test	1
7.	Permeability test	2
8.	Sand cone	3
9.	Penetrometer test	1

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

No.	Concrete lab	Quantity
1.	Compression machine for concrete	2
2.	Flexural machine for concrete	2
3.	Brazilian Test	1
4.	Tensile steel test	1
5.	Young Modulus of Elasticity of concrete	1
6.	Ultrasonic tester	1
7.	Shmidit hammer	2
8.	Vicat machine	3
9.	Blaine Instrument	2
10.	Mortar blender	3
11.	Concrete blender	2

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation Directorate General for Curricula Design & Development

	1.	Autodesk Robot Structural Analysis Professional 2015: Essentials Paperback – October 24, 2014 by Ken Marsh ISBN-13: 978-0991518111
	2.	Engineering Properties of soils based on laboratory testing, Prof. Krishma Reddy,
		UIC
	3.	Properties of concrete (2011), handbook Material properties and rehabilitation
		of RCC buildings. general public works dept.
	4.	A.M.NEVILLE, J.J.BROOKS (2010), handbook on Concrete Technology
		(second edition) of Prentice Hall is an imprint of Pearson, London.
	5.	Krishan Kumar ER (2002), handbook on Repair and rehabilitation of RCC
		buildings. general public works dept.
	6.	Blue Print Reading: Interpreting Working Drawings. Author: E. M. Wyatt
	7.	A Guide to Building Information Modeling for Owners, Managers, Designers,
тан		Engineers, and Contractors", Pearson, John Wiley & Sons, Inc.
Textbooks	8.	5-Autodesk Revit 2018 MEP Mechanical Review for Professional Certification:
		Autodesk Authorized Publisher, Author: Autodesk® Revit®
	9.	O'Flaherty, C.A. (ed) Highways: The Location, Design, Construction and
		Maintenance of Road Pavements. Butterworth Heinemann
	10.	Surveying for Engineers by: John Uren and Bill Price
	11.	Autodesk Navisworks 2018 Using Autodesk Navisworks in a BIM Workflow:
		Autodesk Authorized Publisher, Pearson, DEEPAK MAINI.
	12.	Nazih K. Shammas, Lawrence K. Wang (2011) "Water supply and wastewater
		removal". John Wiley and Sons, Inc. USA.
	13.	Krishan Kumar ER (2002), handbook on Repair and rehabilitation of RCC
		buildings. general public works dept.