Department	General Studies	Major						
Course Name	Discrete Math	Course Code	MATH 303					
Prerequisites	Math 301	Credit Hours CRH	4		CTH			6
			L	3	P	2	T	1

Course Description :

The course of discrete mathematics teach students how to think logically and mathematically, this course cover five important themes; Mathematical reasoning and mathematical logic, combinatorial analysis, discrete structure, algorithmic thinking , application and modeling

General Objective:

The course of discrete mathematics exposes students to aspects of mathematics which have found important applications in computer science and related areas. Logic is the basis of most computer programming, functions are paradigm for program modules, and relations provide the basis for the theory of data structures. This course is designed to student of science computer. The course give all of the mathematical foundations they need of their future studies.

Detailed Objectives:

Trainee will be able to:
1- Construct mathematical argument and solve counting problems and analyze algorithms.
2- Work with discrete structures that include sets, permutations, relations, graphs, trees and finite state machines.
3- Solve certain problems by the specification of an algorithm and then a computer program can be constructed and verified in the mathematical portions that it work properly.
4- Analyze the computer memory and time required to perform a given computer program
5- Model with discrete mathematics that is an extremely important problem-solving skill, and develop by constructing their own models.

Detailed of Theoretical Contents

Detailed of Theoretical Contents				
Hours			Contents	Assessment To
4	Discrete Probability: - An Introduction to Discrete Probability - Probability Theory - Bayes' Theorem - Expected Value and Variances			Exam2 Final Exam
	Textbook	1	Sheldon M. Ross, A First Course in Probability Theory, $7^{\text {th }}$ ed., PrenticeHall, Englewood Cliffs, NJ, 2009	
		2	Kenneth H. Rosen, $7^{\text {th }}$ ed., Discrete Mathematics and its Applications, MC Graw Hill, 2012	
2	Relations: - Relations and Their Properties. The Pigeonhole Principle - n-ray Relations and Their Applications - Representing Relations - Closures of Relations - Equivalence Relations - Partial Orderings			Homework3 Exam2 Final Exam
	Textbook	1	R.P. Grimaldi, Discrete and Combinatorial Mathematics, $5^{\text {th }}$ ed., AddisonWesley, Reading, MA, 2003	
6	Graphs and Trees: - Graphs and Graph Models - Graph Terminology and Special Types of Graphs - Representing Graphs, Isomorphism and Connectivity - Euler and Hamilton Paths - Shortest-Path Problems - Planar Graph and Graph Coloring - Tree and Applications - Tree Traversal - Spanning Tree and Minimum			Exam2 Final Exam
	Textbook	1	G. Agnarsson and R Greenlaw, Graph Theory: Modeling, Applications, and Algorithms, Prentice Hall, Englewood Cliffs, NJ, 2006	
4	Boolean Algebra: - Boolean Functions - Representing Boolean Functions - Logic Gates - Minimization of circuits			Homework4 Final Exam
	Textbook	1	M. Huth and M. Ryan, Logic in Computer Science, $2^{\text {nd }}$ ed, Cambridge university Press, Cambridge, England, 2004	
2	Modeling Computation: - Finite-State Machines - Language Recognition - Turing Machine			Quiz4 Final Exam
	Textbook	1	J. G. Brookshear, Theory of Computation, Benjamin Cummings, Redwood city, CA, 1989	

Detailed of Practical Contents

Hours			Contents	Assessment	
2	The Foundations: Logic and Proofs: - Propositional logic - Predicates and quantifiers - Rules of inference and introduction to proofs				
	Textbook	1	M. Huth and M. Ryan, Logic in Computer Science, $2^{\text {nd }}$ ed, Cambridge university Press, Cambridge, England, 2004		
4	Basic Structures: Sets, Functions, Sequences, Sums, and Matrices - Sets, set operations and cardinality of sets - Functions, sequences and summations - Matrices				
	Textbook	1	R. A. Brualdi, Introductory Combinatorics, $5^{\text {th }}$ ed., Prentice-Hall, Englewood Cliffs, NJ,2009		
2	Algorithms: - Algorithms and complexity of algorithms - The Growth of Functions				
	Textbook	1	S. Baase and A. Van Gelder, Computer Algorithms: Introduction to Design and Analysis, $3^{\text {rd }}$ ed., Adisson-Wesley, Reading, MA, 1999		
4	Number Theory and Cryptography: - Divisibility, modular arithmetic, integer representations - Primes and Greatest Common Divisors - Solving Congruencies and Applications - Cryptography				
	Textbook	1	Richard Crandall and Carl Pomerance, $2^{\text {nd }}$ ed., Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2010		
2	Induction and Recursion: - Mathematical Induction, strong Induction and Well-Ordering - Recursive Definitions, structural Induction and recursive Algorithms				
	Textbook	1	Kenneth H. Rosen, $7^{\text {th }}$ ed., Discrete Mathematics and its Applications, MC Graw Hill, 2012		
2	Counting: - The basic of Counting - The Pigeonhole Principle - Permutations, Combinations, Binomial Coefficients and Identities				
	Textbook	1	Kenneth H. Rosen, $7^{\text {th }}$ ed., Discrete Mathematics and its Applications, MC Graw Hill, 2012		
		2	R.P. Grimaldi, Discrete and Combinatorial Mathematics, $5^{\text {th }}$ ed., Addison-Wesley, Reading, MA, 2003		

Textbook	1	M. Huth and M. Ryan, Logic in Computer Science, $2^{\text {nd }}$ ed, Cambridge university Press, Cambridge, England, 2004
	2	R. A. Brualdi, Introductory Combinatorics, $5^{\text {th }}$ ed., Prentice-Hall, Englewood Cliffs, NJ, 2009
	3	S. Baase and A. Van Gelder, Computer Algorithms: Introduction to Design and Analysis, $3^{\text {rd }}$ ed., Adisson-Wesley, Reading, MA, 1999
	4	Richard Crandall and Carl Pomerance, $2^{\text {nd }}$ ed., Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2010
	5	Kenneth H. Rosen, $7^{\text {th }}$ ed., Discrete Mathematics and its Applications, MC Graw Hill, 2012
	6	D. A. Gunderson, Handbook of Mathematical Induction, Chapman and Hall/CRC Boca Raton, Florida, 2010
	7	R.B.J.T Allenby and A. Slomson, How to Count: An Introduction to Combinatorics, $2^{\text {nd }}$ ed., Chapman and Hall/CRC, Florida, 2010
	8	Sheldon M. Ross, A First Course in Probability Theory, $7^{\text {th }}$ ed., Prentice-Hall, Englewood Cliffs, NJ, 2009
	9	G. Agnarsson and R Greenlaw, Graph Theory: Modeling, Applications, and Algorithms, Prentice Hall, Englewood Cliffs, NJ, 2006
	10	J. G. Brookshear, Theory of Computation, Benjamin Cummings, Redwood city, CA, 1989

