Technical and Vocational Training Corporation

General Directorate of Curricula

Department	General Studies		Major						
Course Name	Applied Mathematics		Course Code	MATH 304					
Prerequisites			Credit Hours	4			CTH		6
			CRH	L	3	Р	2	Т	1
CRH: Credit Hou	rs L: Lecture	P: Practical	T: Tutorial	C	ГН : (Conta	act Ho	ours	

Course Description:

This course introduces students to basics of mathematical principles and functions from discrete mathematics that form the foundation for cryptographic and cryptanalysis methods. The course covers five important themes; Mathematical reasoning and mathematical logic and Structures, algorithmic thinking, the concepts and techniques of number theory, modular arithmetic and finite fields. These principles and functions will be helpful in understanding symmetric and asymmetric cryptographic methods examined in (Applied Cryptography) Course.

Topics:

- The Foundations of logic and Proofs
- Basics of discrete structures that include sets, permutations, relations, graphs, trees and finite state machines.
- Algorithms.
- The concepts and techniques of Number Theory.
- Finite fields.

Experiments:

References:

- M. Huth and M. Ryan, Logic in Computer Science, 2nd ed, Cambridge university Press, Cambridge, England, 2004
- Handbook of Proof Theory (Studies in Logic and the Foundations of Mathematics 137) 1st Edition, Kindle Edition by S. R. Buss (Editor) 1998
- R. A. Brualdi, Introductory Combinatorics, 5th ed., Prentice-Hall, Englewood Cliffs, NJ,2009
- Kenneth H. Rosen, 7th ed., Discrete Mathematics and its Applications, MC Graw Hill, 2012
- S. Baase and A. Van Gelder, Computer Algorithms: Introduction to Design and Analysis, 3rd ed., Adisson-Wesley, Reading, MA, 1999
- DECODE, Design & Analysis of Algorithms 2015 A Guide for Engineering Students
- Richard Crandall and Carl Pomerance, 2nd ed., Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2010
- Richard A. Mollin, Fundamental Number Theory with Application 2nd Edition 2008
- Gary L. Mullen, Daniel Panario, Handbook of Finite Fields, 1st Edition 2013
- Rudolf Lidl, Harald Niederreiter, Introduction to Finite Fields and Their Applications 1986

KINGDOM OF SAUDI ARABIA

Technical and Vocational Training Corporation

General Courses

General Directorate of Curricula

Detailed of Theoretical Contents		
No.	o. Contents	
	The Foundations: Logic and Proofs:	2
	Propositional Logic	
1	Applications of Propositional Logic	
1	Predicates and Quantifiers	
	Introduction to Proofs	
	Proof Methods and Strategy	
	Basic Structures: Sets, Functions, Sequences, Sums, and Matrices	4
	• Sets	
2	Cardinality of Sets	
	Set Operations	
	• Functions	
	Sequences and Summations	
	Matrices	
	Algorithms:	4
2	Algorithms	
5	The Growth of Functions	
	Complexity of Algorithms	
	Number Theory:	8
	Divisibility and Modular Arithmetic	
4	Integer Representations and Algorithms	
4	Primes and Greatest Common Divisors	
	Tool to compute Bezout coefficients	
	Solving Congruencies and Applications	
	Finite fields:	8
	• Groups	
	• Rings	
5	• Fields	
	• Finite Fields of the Form GF(p)	
	Polynomial Arithmetic	
	• Finite Fields of the Form GF(2 ⁿ)	

KINGDOM OF SAUDI ARABIA

Technical and Vocational Training Corporation General Directorate of Curricula

General Courses

Detailed of Practical Contents			
No.	Contents	Hours	
	The Foundations: Logic and Proofs:	2	
1	Propositional logic		
	Predicates and quantifiers		
	Rules of inference and introduction to proofs		
	Basic Structures: Sets, Functions, Sequences, Sums, and Matrices	2	
2	• Sets, set operations and cardinality of sets		
	• Functions, sequences and summations		
	Matrices		
	Algorithms:	4	
3	Algorithms and complexity of algorithms		
	• The Growth of Functions		
	Number Theory:	6	
4	Divisibility and Modular Arithmetic		
	Integer Representations and Algorithms		
4	Primes and Greatest Common Divisors		
	Bezout coefficients		
	Solving Congruencies and Applications		
	Finite fields:	6	
	• Groups		
	• Rings		
5	• Fields		
5	• Finite Fields of the Form GF(p)		
	Polynomial Arithmetic		
	• Finite Fields of the Form GF(2 ⁿ)		

	1	M. Huth and M. Ryan, Logic in Computer Science, 2 nd ed, Cambridge university Press, Cambridge, England, 2004
	2	Handbook of Proof Theory (Studies in Logic and the Foundations of Mathematics 137) 1st Edition, Kindle Edition by S. R. Buss (Editor) 1998
	3	R. A. Brualdi, Introductory Combinatorics, 5 th ed., Prentice-Hall, Englewood Cliffs, NJ,2009
	4	Kenneth H. Rosen, 7th ed., Discrete Mathematics and its Applications, MC Graw Hill, 2012
Textbooks	5	S. Baase and A. Van Gelder, Computer Algorithms: Introduction to Design and Analysis, 3 rd ed., Adisson-Wesley, Reading, MA, 1999
	6	DECODE, Design & Analysis of Algorithms 2015 A Guide for Engineering Students
	7	Richard Crandall and Carl Pomerance, 2 nd ed., Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2010
	8	Richard A. Mollin, Fundamental Number Theory with Application 2nd Edition 2008
	9	Gary L. Mullen, Daniel Panario, Handbook of Finite Fields, 1st Edition 2013
	10	Rudolf Lidl, Harald Niederreiter, Introduction to Finite Fields and Their Applications 1986