Department	General Study	Major						
Course Name	Engineering Mathematics	Course Code	MATH 381					
Prerequisites		Credit Hours						
		CRH	4			CTH	L	3
			P	0	T	2		

Course Description :

This course is designed to give trainees a basic knowledge on the trigonometry, basic operations and resolution of equations of complex numbers. Also, this course is designed to learning trainees on how to resolve ordinary differential equations of order 1 and order 2, in a first step. Then, in a second step, they discover how to resolve these equations, alternatively, by using the Laplace Transform. Finally, the last chapter of this course is useful for trainees on how to apply Fourier and Z- Transforms.

General Objective:

The objectives of the "Engineering Mathematics" course are to ensure that trainees, whatever their mathematical background at entry, acquire the mathematical knowledge and skills required for the more advanced mathematical techniques introduced and applied in their specialized courses in the field of Telecommunications. These needs provide motivation for the Mathematics course.

Detailed Objectives:

Trainee will be able to:
1- Study trigonometric relations, trigonometric functions, polar coordinates, graphs and derivatives.
2- Resolve operation on complex numbers including addition, subtraction, multiplication, division, powers and roots, apply Demoiver theorem and find solution of a quadratic equation.
3- Resolve linear ordinary differential equation of order 1 and of order 2.
4- Apply Laplace transform and solve initial value problems by Laplace transform.
5- Apply Fourier transform and Z Transform.

Detailed of Theoretical Contents				
Hours	Contents			Assessment Tools
16	Trigonometry - Trigonometric relations, trigonometric functions, - Graphs of mathematical functions, polar coordinates, - Derivatives of trigonometric functions.			
	Textbook	1	Essential Trigonometry: A Self-Teaching Guide- Tim Hill - 2013	
		2	Algebra and Trigonometry (10th Edition) - Michael Sullivan -2015	
16	Complex numbers - Operation on complex numbers: addition, multiplication, division, - Geometric representation and Polar form, - Demoivre Theorem , Root of a complex number, - Solution of a quadratic equation.			
	Textbook	1	Complex Numbers from A to ... Z, Titu Andreescu, Dorin Andrica	
		2	Complex Numbers and Geometry (Mathematical America Textbooks) 2nd Edition - Liang-shin H	sociation of

	\bullet	Essential Trigonometry: A Self-Teaching Guide- Tim Hill - 2013	
	$\bullet \bullet$	Algebra and Trigonometry (10th Edition) - Michael Sullivan -2015	
	$\bullet \bullet$	Complex Numbers from A to ... Z, Titu Andreescu, Dorin Andrica	
Textbooks	$\bullet \bullet$	Complex Numbers and Geometry (Mathematical Association of America Textbooks) 2nd Edition - Liang-shin Hahn	
	$\bullet \bullet$	A Short Course in Ordinary Differential Equations, Qingkai Kong, Springer International publishing, 2014	Lectures, Problems And Solutions For Ordinary Differential
	$\bullet \bullet$	Equations Second Edition Edition - Yuefan Deng -2017 Springer -Verlag London, 2014	

