الــــبـلـكـة الـعــربـيــة الـــــعـوديـة
الهؤسسة العامة للتدريب التقني والمهني
الإدارة العامة لتصهيمر وتطوير المناهج

طبـعة

مقدمة

مقدمة

الحمـد لله وحده، والصـلاة والسـلام على من لا نبي بعده، مححمد وعلى آله وصحبـه، وبعد :

تسعى المؤسسة العامة للتدريب التقني والمهني لتأهيل الكوادر الوطنية المدربة القادرة على شغل الوظائف التقنية والفنية والمهنية المتوفرة يِّ سـوق العمل، ويأتي هذا الاهتمام نتيجـة للتوجهات السـديدة من لدن قادة هذا الوطن التي تصب پِ مجملها نحو إيجاد وطن متصامل يعتمد ذاتياً على موارده وعلى قوة شبابه المسلح بالعلم والإيمـان من أجل الاستمرار قدماً پِ دفع عجلة التقدم التتموي: لتصل بعون الله تعالى لمصـاف الدول المتقدمة صناعياً.
وقد خطت الإدارة العامة لتصميم وتطوير المناهـج خطوة إيجابيـة تتفق مع التجـارب الدولية المتقدمة ِّغ بناء البراهـج التدريبية، وفق أسـاليب علمية حديثة تحاكي متطلبات سوق العمل بكافة تخصصـاته لتلبي متطلباته ، وقد تمثلت هذه الخطوة يٌ مشروع إعداد المعايير المهنية الوطنية الذي يمثل الركيزة
 العمل والمؤسسـة العامة للتدريب التقني والمهني بحيث تتوافق الرؤية العلمية مع الواقع العملي الذي تفرضه متطلبات سوق العمل، لتخرج هذه اللجان يُ النهاية بنظرة متصاملة لبرنامـج تدريبي أكثر التصـاقاً بسوق العمل، وأكثر واقعية يٌ تحقيق متطلباته الأسـاسية.
وتتتاول هذه الحقيبة التدريبية " أسـاسيات تقنية تكييف الهواء (عملي) " ملدربي تخصص "تبريد وتكييف" لمعاهد التدريب العسـكري المهني موضوعات حيوية تتتاول كيفية اكتسـاب المهارات الـلازمة لهذا التخصص.
والإدارة العامة لتصهيم وتطوير المناهـج وهي تضـع بين يديك هـذه الحقيبة التدريبية تأمل من الله عز وجل أن تسهم بشكل مباشـر پٌ تأصيل المهارات الضرورية اللازمـة، بأسلوب مبسط يخلو من التعقيد ، وبالاستتعانة بالتطبيقات والأشكـال التي تدعم عملية اكتسـاب هـذه المهارات. والله نسـأل أن يوفق القائمـين على إعدادهـا والمستفيـدين منها لما يحبـه ويرضاه: إنه سميع مجيب

الدعاء.

الإدارة العامة لتصميم وتطوير المناهـج

تقهيلـ

تشهد تكنولوجيا التبريد والتكييف تطوراً مـضطرداً مـن حيـث تطبيقاتـه فِّ العديـد مـن المجـالات
 التبريد والتتكييف. وبـلا شـك فإن الدراسـة النظريـة وحـدهـا لا يمـكـن أن تحقق هـذا الهـدف وعليـه يـصبح التطبيق العملي ضرورياً وٌِ غاية الأهمية لتمـكـين المتدرب من اكتسـاب المهارات التي تؤهله للقيام بتتفيـن الجدارات المختلفة پِ مجال تخصصـه.

وٌِ هذه الحقيبة تم تصميم تجـارب عملية لمقرر أسـاسيات تقنية تكييف الهواء حيـث تتكـون هـذه الحقيبة من تلاثة وحـدات . الوحـدة الأولى تعـني باختبـار عمليـات تكييـف الهواء المختلفـة والوحـدة الثانيـة تعنـى باختبـار دورات تكييـف الهواء الـصيفية والشتوية والوحـدة الثالثتة تقـدم تمـارين على حسـاب أحمـال التبريد والتدفئة لأماكن مختلفة باستخدام نمـاذج حسـاب الأحمـال وبرنامـج الإكسل.

أساسيات تقنية تكييفالهواء- عملي

اختبـار عمليـات تكييـف الهواء المختلفة

الجلارة: القدرة على اختبار عمليـات التكييف المختلفة.
الأهداف: عندما تكمل هذه الوحدة تكون قادراً على:

1. قياس درجة حرارة الهواء الجافة.
2. قيـاس درجة حرارة الهواء الرطبة.
3. قياس الرطوبة النسبية للهواء.
4. أن تحدد خواص الهواء بمعرفة خاصيتـين فقط من خواصـه. 5. أن تمثل عمليـات التصييف المختلفة على خريطة السيـكرومتري.
5. أن تحسب سعة التسخخين لملف التسـخين.
6. أن تحسب سعة التبريد لملف التبريد.
7. أن تحسب كمية المياه المستهلكة خـلال عملية الترطيب. 9. أن تحسب كـمية المياه المكثفة نتيجة إزالة الرطوبة.
8. أن تحدد خواص الهواء بعد عملية الخلط.

مستوى الأداء المطلوب :
أن لا تقل نسبـة إتقان هذه الجدارة عن 90٪٪.
الوقتّ المتوقِع للتلدريب :
10 سـاعات دراسيـة.
الوسـائل المسـاعلةة:
2. 1. موضوعات الوحدة الثانية من هذه الحقيبة.
3. موضـوع: القـانون الأول والثـاني للـديناميكا الحـراريـة مـن مـادة: أسـاسـيـات علـم الحراريـات

والموائع.

متطلبـات الجدلارة:

تم التـدرب على مهارة: قياس درجة الحرارة، وقياس كمية التدفق (معدل السـريان) پٌِ المادة: القياسـات.

الوحلدة الأولى : اختبـار عمليـات تكييف الهواء المختلفة

متقلمة

تتم عمليـات تكييـف الهواء بـإجراء المعالجـات الـلازهـة للـهواء مـن تبريـد، تسـخـين، ترطيـب وإزالـة
 المذكورة حيث يقوم بعمل تجارب لمختلف عمليـات التكييـف البسيطة هثـل التبريـد المحسوس، التسـخين المحسوس، الترطيب وإزالة الرطوبة كذلك يقوم المتدرب بعمليـات تكييف مركبـة وتمثيلها على الخريطة السيكرومترية. ومن ثم القيام بعمل الحسـابات الـلازمـة.

وحلدة تكييف هواء تـليمية تـمل بـالحاسب

Computer Linked Air Conditioning Unit

التلدريب العملي رقم (1)

الجدارة:

تحديد خواص الهواء قبل وبعد إجراء عملية تسخخين محسوس وايجاد سـعة ملف التسـخين. باستخدام وحدة تكييف الهواء التعليمية الموضحة بالشـكل رقم (1-1 1). المواد والتجهيزات والأدوات المطلوبة:

مـلابس العمل، جهاز قياس درجة الحرارة الجافة، جهاز قياس درجة الحرارة الرطبة، جهاز قياس الرطوبة النسبية للهواء، وحدة التـكييف التدريبية (سـخان)، آلة حاسبـة، قلم، مسطرة.
المطلوب:

مراقبة التفير لكل خاصية من خواص الهواء بعد إجراء عملية تسـخين محسوس.
الخطوات:
1- اتباع إجراءات السـلامة الـلازمة قبل البدء يفِ التـدريب.
2- قـم بتشغيل المروحة أولاً بحيث تعطي كـمية الهواء المطلوبة.

4- قم بتشغيـل وحدة الحاسـب المتصلة بالجهاز.
5- قم بأخذ القراءات وتسـجيلها وفق الجدول التالي:

2. درجتي الحرارة الجافة والرطبة بـد ملف التسخـين:	
درجة الحرارة الرطبة	درجة الحرارة الجافة
رمزهـا :	رمزها:
قيمتها :	قيمتها
وحدتها :	وحدتها

3. باستتخدام القراءات السـابقة قبل وبعد ملف التسـخـين؛ ارسـم العملية عملية التسـخين المحسوس على خريطة السيكرومتري.						
4. حدد خواص الهواء قبل ملف التسخـين:						
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	الحجم النوعي	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	dp
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{KgH}_{2} \mathrm{O}}{\mathrm{kgair}^{2}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

5. حدد خواص الهواء بعد ملف التسخـين:						
درجة الحرارة الجافة	درجة الحرارة الرطبة	النسبوبة	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
${ }^{\text {d }}$	wb	RH	ω	v	h	dp
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}^{2}}$	m^{3} / kg	kJ/k	${ }^{\circ} \mathrm{C}$

6. راقب تغير خواص الهواء بعد عملية التسخين: حيث يشير كل سهم كما يلي : (= ثبوت الخاصية) ، (\uparrow (زيادة للخاصية) (ل نقصـان للخاصية)

درجة الندى	الإنتالبي	النوعيم	الرطوبة النوعية	النسبية	درجة الحرارة الرطبة	درجة الحرارة الجافة	
$d p$	h	v	ω	RH	wb	$d b$	
							التــسـخين المحسوس

> A : مساحة المقطع لمجرى الهواء.
> v : الحجم النوعي للهواء.
> $\dot{m}_{a}=$
> Kg / s
> الناتج:

مـلاحظات:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقّم (2)

الجدارة:

تحديد خواص الهواء قبل وبعد إجراء عملية تبريد محسوس وايجاد سعة ملف التبريد. باستخدام وحدة تكييف الهواء التعليمية الموضحة بالشكل رقم (1-1 1). المواد والتجهيزات والأدوات المطلوبة:

مـلابس العمل، جهاز قياس درجة الحرارة الجافة، جهاز قياس درجة الحرارة الرطبة، جهاز قياس الرطوبة النسبية للهواء، وحدة التكييف التدريبيـة (ملف تبريد)، آلة حاسبـة، قلم، مسطرة.
المطلوب:

مراقبة التغير لكل خاصيـة من خواص الهواء بعد إجراء عملية تبريد هحسوس.
الخطوات:
1- اتباع إجراءات السـلامة الـلازمة قبل البدء ـٌِ التـدريب.
2- قم بتشغيل المروحة أولاً.
3- قم بتشغيل وحدة التبريد.

4- تأكد من أن درجة حرارة الهواء الجـافة الخارجة من الوحدة أكبر مـن درجـة النـدى للهواء مستتخدمـاً خريطة السيـكرومتري وذلك عن طريق تغيير سـرعة المروحة. 4- قم بتشغيل وحدة الحاسـب المتصلة بالجهاز. 5- قم بـأخذ القراءات وتسـجيلها وفق الجدول التالي:

1 1. درجتي الحرارة الجافة والرطبة قبل ملف التبريد :	
درجة الحرارة الرطبة	درجة الحرارة الجافة
رمزها:	رمزهـا :
قيمتها :	قيمتها:
وحدتها :	وحدتها

2	
درجة الحرارة الرطبة	درجة الحرارة الجافة
رمزها :	رمزهـا

3. باستخخدام خواص الهواء قبل وبعد ملف التبريد؛ ارسـم عملية التبريد المحسوس على خريطة السيكرومتري.

4. حدد خواص الهواء قبل ملف التبريد :						
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	dp
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

5. حدد خواص الهواء بعد ملف التبريد :						
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبيـة	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	$d p$
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}^{2}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

6. راقب تغير خواص الهواء بعد عملية التبريد :

حيث يشير كل سهم كما يلي : (= ثبوت الخاصية) ، (\uparrow زيادة للخاصية) (ل نقصان للخاصيـة)

درجة الندى	الإنثالبي	النوعيم	الرطوبة النوعية	الرطوبة النسبية	درجة الحرارة الرطبة	درجة الحرارة الجافة	
$d b$	wb	RH	ω	v	h	dp	
							المحسوس

7. أوجد كتلة الهواء المار على الملف لكل ثانية (7 (${ }^{\text {الم }}$):

$$
\begin{aligned}
& \text { حيث: } \quad \text { : سـرعة الهواء المار على ملف التبريد } \\
& \text { A : مسـاحة المقطع لمجرى الهواء. } \\
& \text { v : الحجم النوعي للهواء. }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقّم (3)

الجدارة:

تحديد خواص الهواء قبل وبعد إجراء عملية ترطيب الهواء بالبـخار وحسـاب استهـلاك المياه للعملية. باستخدام وحدة تكييف الهواء التعليمية الموضتحة بالشكل رقم (1-1). المواد والتجهيزات والأدوات المطلوبة:

مـلابس العمل، جهاز قياس درجة الحرارة الجافة، جهاز قياس درجة الحرارة الرطبـة، جهـاز قيـاس الرطوبة النسبيـة للهواء، وحدة التكييف التدريبية (مرطب ببخار الماء)، آلة حاسبـة، قلم، مسطرة.
المطلوب:

مراقبة التغير لكل خاصية من خواص الهواء بعد إجراء عملية ترطيب ببخار الماء.
الخطوات:
1- اتباع إجراءات السـلامة الـلازمة قبل البدء يْ التدريب.
2- قم بتشغيل المروحة أولاً.
3- قم بتشغيل المرطب.

4- قم بتشغيل وحدة الحاسبب المتصلة بالجهاز. 5- قم بأخذ القراءات وتسـجيلها وفق الجدول التالي:

1. درجتي الحرارة الجافة والرطبة قبل المرطب:	
درجة الحرارة الرطبة	درجة الحرارة الجافة
رمزهها :	رمزهـا
قيهتها	قيمتها
وحدتها	وحدتها

2. درجتي الحـارة الجافة والرطبة قبل المرطب:	
درجة الحـرارة الرطبة	درجة الحرارة الجافة
رمزهـا :	رمزهـا :
قيمتها :	قيمتها
وحدتها	وحدتها

3. باستخخدام خواص الهواء قبل وبعد المرطب؛ ارسم عملية الترطيب على خريطة السيكرومتري.

				4. حدد خواص الهواء قبل المرطب:		
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	${ }^{\text {dp }}$
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

5. حدد خواص الهواء بعد المرطب:						
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	${ }^{\text {dp }}$
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

درجة الندى	الإنثالبي	النوعيم	الرطوبة النوعية	النسبية	درجة الحرارة الرطبة	درجة الحرارة الجافة	
$d p$	h	v	ω	RH	wb	${ }^{\text {d }}$	
							ترطيب بالبـخار

مـلاحظات:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقّم (4)

تحديد خواص الهواء قبل وبعد إجراء عمليـة ترطيب أدياباتي وحسـاب استتهـلاك المياه للعملية.
بـاستخـدام مبرد هواء صـحراوي.
المواد والتجهيزات والأدوات المطلوبة:

مـلابس العهـل، جهـاز قيـاس درجـة الحـرارة الجـافـة، جهـاز فيـاس درجـة الحـرارة الرطبـة، مرطـب
أدياباتي (مـكيف صـحراوي).

مراقبة التغير لكل خاصية من خواص الهواء بعد إجراء عملية ترطيب أدياباتي.
الخطوات:
1- اتباع إجراءات السـلامة اللازمة قبل البدء ـِّ التـدريب.
2- قم بتشغيل مضخخة المياه لمدة لا تقل عن نصف سـاعة لضمـان تبليل مـادة الحشو للمكيف.
3- قم بتشفيل المكيف على السـرعة العالية.
5- قم بأخذ القراءات وتسـجيلها وفق الجدول التالي:

	1		
	درجة الحرارة الرطبة		درجة الحرارة الجافة
	رمزها:		رمزهـا :
	قيمتها :		قيمتها:
	وحدتها :		وحدتها

3. بـاستخدام خواص الهواء قبل وبعد المكيف الصـحراوي؛ ارسـم عملية الترطيب الأدياباتي على خريطة السيكرومتري.

		4. حدد خواص الهواء قبل دخوله المكيف الصـحراوي:				
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
$d b$	wb	RH	ω	v	h	${ }^{\text {dp }}$
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}^{\text {a }}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

5. حدد خواص الهواء عند خروجهه من المكيف الصحراوي:						
درجة الحرارة الجافة	درجة الحرارة الرطبة	$\begin{aligned} & \text { الرطسبية } \end{aligned}$	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	$d p$
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{KgH}_{2} \mathrm{O}}{\mathrm{kgair}^{2}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

6. راقب تغير خواص الهواء بعد عملية الترطيب الأدياباتي:

درجة الندى	الإنتالبي	النوعيم	الرطوبة النوعية	الرطوبة النسبية	درجة الحرارة الرطبة	درجة الحرارة الجافة	
$d p$	h	v	ω	RH	wb	db	
							ترطيب أدياباتي

6. أوجد كتلة الهواء المار على المرطب لكل ثانية (${ }_{\text {(}}^{\text {(}}$ (${ }_{\text {) }}$	
V : سـرعة الهواء الخارج من المكيف. A : مساحة المقطع لمخرج المكيف. v : الحجم النوعي للهواء.	: حيث $\quad \dot{m}_{a}=\frac{V \cdot A}{V}$ أو يمكن الرجوع الى جدول بيانات المكيف
$\dot{m}_{a}=$	Kg/s الناتج:

$\Delta \omega=\omega_{2}-\omega_{1}$	حيث:	$\dot{m}_{w}=3600 \cdot \dot{m}_{a} \cdot \Delta \omega$	
$\dot{m}_{w}=$	l/hr		الناتج:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقّم (5)

تحديد خواص الهواء قبل وبعد إجراء عملية تبريد وإزالـة رطوبة وحسـاب معـل التكثيف للعملية .
باستخدام وحدة تكييف الهواء التعليمية الموضحة بالشكل رقم (1-1 1). المواد والتجهيزات والأدوات المطلوبة:

مـابس العمل، جهاز قياس درجة الحرارة الجافة، ، جهاز قياس درجة الحـرارة الرطبـة، جهـاز قيـاس الرطوبة النسبية للهواء، وحدة التكييف التدريبية (ملف تبريد)، آلة حاسبة، قلم، مسطرة. المطلوب:

مراقبة التغير لكل خاصية من خواص الهواء بعد إجراء عملية إزالة رطوبة.
الخطوات:
1- اتباع إجراءات السـلامة اللازمة قبل البدء يٌ التـدريب.
2- قم بتشغيل المروحة أولاً.
3- قم بتشغيل وحدة التبريد.

4- تأكـد من أن درجة حرارة الهواء الجافـة الخارجـة مـن الوحـدة أقل مـن درجـة الندى للهواء مستخدماً خريطة السيكرومتري وذلك عن طريق تفيير سرعة المروحة. 4- قم بتشغيل وحدة الحاسب المتصلة بالجهاز. 5- قم بأخذ القراءات وتسجيلها وفق الجدول التالي:

	1. درجتي الحرارة الجافة والرطبة قبل ملف التبريد :		
	درجة الحرارة الرطبة		درجة الحرارة الجافة
	رمزها		رمزها:
	قيمتها :		قيمتها:
	وحدتها		وحدتها

2. درجتي الحرارة الجافة والرطبة بعد ملف التبريد :	
درجة الحرارة الرطبة	درجة الحرارة الجافة
رمزهـا :	رمزهـا
قيمتها	قيمتها:
وحدتها	وحدتها

3. باستخدام خواص الهواء قبل وبعد ملف التبريد؛ ارسـم عملية التبريد مع إزالة رطوبة على خريطة السيكرومتري.

4. حدد خواص الهواء قبل ملف التبريد :						
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	النوعيم	الإنتالبي	درجة الندى
$d b$	wb	RH	ω	v	h	dp
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ / k	${ }^{\circ} \mathrm{C}$

5. حدد خواص الهواء بعد ملف التبريد :						
درجة الحرارة الجافة	درجة الحرارة الرطبة	$\begin{aligned} & \text { النرطبية } \\ & \end{aligned}$	النوعية	النوعيم	الإنثالبي	درجة الندى
$d b$	wb	RH	ω	v	h	dp
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}^{2}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

درجة الندى	الإنثالبي	النوعيم	الرطوبة النوعية	النسبية	درجة الحرارة الرطبة	درجة الحرارة الجافة	
$d p$	h	v	ω	RH	wb	$d b$	
							إزالة الرطوبة

مـلاحظات:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقمى (6)

الجدارة:

تحديـد خـواص الهواء قبـل وبعـد إجـراء عمليـة مركبــة (عمليـة ترطيـب بالبـخـار ، تسـخـن) ومـراقبـة التغفير النـاتج من العملية. باستخخدام وحدة تكييف الهواء التعليمية الموضحة بالثشكل رقم (1-1 1). المواد والتتجهيزات والأدوات المطلوبة:

مـلابس العمل، جهاز قيـاس درجة الحرارة الجافة، جهاز قيـاس درجة الحـرارة الرطبـة، جهـاز قيـاس الرطوبة النسبيـة للهواء، وحـدة التكييـف التدريبيـة (سـخان أولـي ، مرطب ، سـخان)، آلـة حاسـبـة، قلـم،
المطلوب:

مراقبة التغير لكل خاصية من خواص الهواء بعد إجراء العملية.
الخطوات:
1- اتباع إجراءات السـلامة الـلازمة قبل البدء هٌِ التـدريب.
2- قم بتشغيل المروحة أولاً.

3- قم بتشغيل المرطب وأي عدد من السـخانات. 4- قم بتشغيل وحدة الحاسب المتصلة بالجهاز. 5- قم بأخذ القراءات وتسـجيلها وفق الجدول التالي:

2. درجتي الحرارة الجافة والرطبة قبل المرطب:	
درجة الحرارة الرطبة	درجة الحرارة الجافة
رمزها:	رمزهـا :
قيمتها	قيمتها:
وحدتها	وحدتها

3. درجتي الحـرارة الجافة والرطبة بـدالسـخان:	
درجة الحرارة الرطبة	درجة الحرارة الجافة
رمزهـا :	رمزهـا :
قيمتها :	قيمتها :
وحدتها :	وحدتها :

4. باستخدام خواص الهواء السـابقة؛ ارسـم عمليتي الترطيب و التسخخين) على خريطة السيكرومتري.

5. حدد خواص الهواء قبل المرطب:						
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	${ }^{\text {dp }}$
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}^{2}}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/k	${ }^{\circ} \mathrm{C}$

7. راقب تفير خواص الهواء بعد العمليتين (ترطيب + تسخين): حيث يشير كل سهم كما يلي : (= ثبوت الخاصية) ، (\uparrow زيادة للخاصية) (ل نقصـان للخاصية)							
درجة الندى	الإنثالبي	الحجم النوعي	الرطوبة النوعية	النسبية	درجة الحرارة الرطبة	درجة الحرارة الجافة	
$d p$	h	v	ω	RH	wb	$d b$	
							(ترطيب + تسـخين)

\qquad مـلاحظات:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقّم (7)

الجدارة:
تحديد خواص الهواء قبل وبعد إجراء عملية مركبة (تبريد مع إزالة رطوبة ثم إعادة تسخين) ومراقبة التفير الناتج من العملية باستخدام وحدة تكييف الهواء التعليمية الموضحة بالشكل رقم (1-1 1). المواد والتتجهيزات والأدوات المطلوبة:

مـلابس العمل، جهاز قياس درجة الحرارة الجافة، جهاز قياس درجة الحـرارة الرطبـة، جهـاز قيـاس
الرطوبة النسبيـة للهواء، وحدة التكييف التدريبية (ملف تبريد ، سـخان)، آلة حاسبـة، قلم، مسطرة.
المطلوب:

مراقبة التفير لكل خاصية من خواص الهواء بعد إجراء العملية.
الخطوات:
1- اتباع إجراءات السـلامة الـلازمة قبل البدء ـٌِ التدريب.
2- قم بتشغيل المروحة أولاً.

3- قم بتشغيل وحدة التبريد وأي عدد من السـخانات بعد ملف التبريد.
4- تأكــد مـن أن درجـة حـرارة الههواء الجافـة الخارجـة مـن ملـف التبريـد أقـل مـن درجـة النـدى للـهواء مستخدماً خريطة السيكرومتري وذلك عن طريق تغيير سـرعة المروحة. 5- قم بتشغيل وحدة الحاسـب المتصلة بالجهاز. 6- قم بأخذ القراءات وتسـجيلها وفق الجدول التالي:

1. درجتي الحـرارة الجافة والرطبة قبل ملف التبريد :	
درجة الحرارة الرطبة	درجة الحرارة الجافة
رمزها :	رمزهـا
قيمتها :	قيمتها:
وحدتها	وحدتها

	2 2.		
	درجة الحرارة الرطبة		درجة الحرارة الجافة
	رمزهـا :		رمزهـا
	قيمتها :		قيمتها:
	وحدتها		وحدتها

	3. درجتي الحرارة الجافة والرطبة بعد السخان:		
	درجة الحرارة الرطبة		درجة الحرارة الجافة
	رمزهـا		رمزهـا
	قيمتها :		قيمتها:
	وحدتها :		وحدتها

4. باستخدام خواص الهواء السـابقة؛ ارسـم عمليتي التبريد مع إزالة رطوبة + إعادة تسخـين) على خريطة السيكرومتري.

5. حدد خواص الهواء قبل ملف التبريد :						
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	الحجم النوعي	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	dp
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}}$	m^{3} / kg	kJ / k	${ }^{\circ} \mathrm{C}$

6. حدد خواص الهواء بعد ملف التبريد (قبل السخان):						
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبية	الرطوبة النوعية	النوعيم	الإنثالبي	درجة الندى
db	wb	RH	ω	v	h	dp
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\mathrm{kgair}^{2}}$	m^{3} / kg	kJ/k	${ }^{\circ} \mathrm{C}$

			7.			
درجة الحرارة الجافة	درجة الحرارة الرطبة	الرطوبة النسبيـة	الرطوبة النوعية	الحـجم النوعي	الإنثالبي	درجة الندى
$d b$	$w b$	RH	ω	v	h	$d p$
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	\%	$\frac{\mathrm{kgH}_{2} \mathrm{O}}{\text { kgair }}$	m^{3} / kg	kJ / k	${ }^{\circ} \mathrm{C}$

8. راقب تغير خواص الهواء بعد عمليتي (التبريد مع إزالة رطوبة + إعادة تسـخين): حيث يشير كل سهم كما يلي : (= ثبوت الخاصية) ، (\uparrow زيادة للخاصية) (ل نقصـان للخاصيـة)

درجة الندى	الإنتالبي	النوعيم	الرطوبة النوعية	النسبية	درجة الحرارة الرطبة	درجة الحرارة الجافة	
${ }^{\text {dp }}$	h	v	ω	RH	wb	db	
							تبريد مع إزالة رطوبة ، إعادة تسـخين

مـلاحظات:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

أساسيات تقنية تكييف الهواء- عملي

اختبـاردورات تكييف الهواء الصيفية والشتوية

1. تمثيل عملية خلط الهواء على خريطة السيكرومتري. 2. ثـثيل دورات تكييف الهواء الصيفية والثتوية على خريطة السيكرومتري. 3. عمل الحسـابات الـلازمة للدورات المذكـكورة.

مستوى الأداء المطلوب:
أن لا تقل نسبة إتقان هذه الجدارة عن 90٪.

الوقتت المتوقي للتدريب:
8 ساعات دراسية.

الوسائل المساعلة:

1. سـوف تحتـاج إلى الرجـوع إلى موضـوعات العمليـات الـسيكرومترية ودورات التكييـِ ٌِِ

التخصص النظري والعملي.
2. تتفيذ التدريبات العملية پٌ المعمل.

متطلبـات الجدارة:

تم التدرب على المهارة: قياس درجة الحرارة، وقياس كميـة التدفق (معدل السـريان) ِيْ الموضوعات المشـابهة.

اختبـار دورات تكييف الهواء الصحيفة الثانية والشتوية	$172 \text { برد }$ أساسيات تقنية تكييفالهواء- عملي	تـبريد وتكيييف
فالمنطقة الشـرقية تمتاز بهناخ حار رطب صيفا وبارد شتاءً يِّ حين أن المنطقة الغربيـة تمتاز بهناخ حار رطب		
ـول السنـة وإجراء الاختبـارات المعهليـة	يف التي تتاسـب كل منطقة المناسـبة.	يحتـم هعـرف اختيـار أن

الوحدة الثانية
 172

 الوحلدة التعليمية لتكييف الهواء

 الوحلدة التعليمية لتكييف الهواء
 Recirculating Air Conditioning Demonstrating Unit

التخصصص

Rcirculating Air Conditioning Demonstrating Unit

Unit Layout المكونات الرئيسية للجهاز
يتكون الجهاز الموضح وِّ الثكـل (2-1 1) من الآتي :

1- 4 مواضع للسريان المستقر لمجرى الهواء stabilizing duct section 2 ـ الدفاعة blower

3 ـ المزدوجة الحرارية Thermocouple (عدة مواضـ لـرججات الحرارة الجافة والرطبة)
4 ـ المانومتر المائل ـ لقيـاس فرق الضـنـ خـلالـ الفوهـة orifice وذلك لقياس معدل سـريا هواء التغذية .

5 ـ فتحة الهواء العادم discharge aperture.
6 ـ الخانق damper
7 ـ المانومتر المائل ـ لقياس معدل سـريا الهواء النقي باستعمال أنبوبة بيتوت (pitot- tube) . 8 ـ وتحة الهواء الخارجي

9 ـ منطقة الخلط
10 ـ لوحة توزيع مخرهـة (2)
11 ـ ــرطب لبـخار الماء steam injector.
12 ـ صمـام يدوي للتحكم قي كمية البخار .
13 ـ غلاية بخار (بها عوامة مـاء ، وعدد 3 سـخانات مغمورة)
Pressure relief valve 14 ـ صمام أمـان لضغط الغـاية 15 ـ عداد ضغط للفـلاية steam pressure gauge.

16 ـ موضـع مدخل الماء للفـلاية
17 ـ موضع تصريف مـاء الفـلاية boiler water drain 18 ـ قنينة لقياس ماء التكثيف water extraction measuring cup.

19 ـ سـخانات أولية (2) ـ (pre-heaters)
20 ـ سـخانات إعادة التسـخين (2) ـ (re-heaters)
21 ـ ملف التبريد (مبخر دورة التبريد الانضفاطية)

تشفيل الجهاز

يجب اتباع التعليمات التالية عند إجراء أي من التجارب المطلوبة على الجهاز الموضح بالثكل (2-1 1):. 1- اقفل الصمام اليدوي لتحكـم البخار
2 - قم بعمل توصيـلات التصريف drain (اذا دعت الضرورة) وكذلك توصيـلات الميـاه.
3- قـ بإمداد الميـاه لخـزان الميـاه حتـى يمتلـئ الخـزان. سـوف يقفـل الخـزان أوتومـاتيكيـاً بواسـطة العوامـة
عندما يمتلئ
4- بلل كل الحسـاسـات لترمومترات درجة الحرارة الرطبة.
5 -تأكد أن قواطع الدائرة الكهربائية يٌِ وضع الإقفال (OFF)،ثم قم بتوصيل المفتاح الكهريائي للجهاز .(plug in the demonstrator)

6 - قـم بتوصـيل القـاطع الـرئيس للحهـاز. يٌِ هــذه الحالـة ستـضئ لمبـة البيـان (pilot lamp) وكــذلك لوحـة درجات الحرارة .
7 - يدوياً ، قم بضبط الناشر ـ الخـانق ـ (damper) ليعطي نسبة معدل الهواء الراجـع (هـن \% 0 إلى 100 . $\%$

8 - حسب التجربة التي ترغب وِ أدائها ، قم بتوصيل القـاطع الكهربـائي الملائم لــذلك مـع ضـبط دفاعـة الهواء حسب المطلوب . التوضيحات التالية تعطي اختصـاراً لعمل كل من

ـ القاطع الكهربائي للدفاعة Blower Circuit Breaker
يـتـم تغذيــة الدفاعـة بالقـدرة الـلازمـة للكهربـاء حـسب سـرعة الدفاعـة والـتي تقـوم بامــداد الهواء
للهـجري (متفيرة السـرعة)

- متحككم سـرعة الدفاعة : Blower Speed Control

تحريك المتحكم ٌِْ اتجاه عقارب السـاعة يجعل الدفاعة تدور بسـرعة صفر (التوقف) الي السـرعة
الكاملة ومن ثم العكس .
Compressor Circuit Breaker : قاطع الضاغط الهـ ال
لتوصيل دائرة ضاغط دائرة التبريد حيث يقوم المبخر يٌ دائرة التبريد (ملف التبريد) بتبريـد هـواء
التغذية .

$$
0 \text { قواطع السـخانات (السـخان الأولي والسـخان المتقدم) }
$$

Air Heater (Pre- heater and Re-heater) Circuit Breakers
لتوصيل الدائرة الكهريائية للسـخانات المذكورة (عدد اثـــين ســخان أولكي $2 \times 1 \mathrm{C} W$) وعـدد اثــين ستخان متقدم $2 \times 0.5 \mathrm{~kW}$).

ملحوظة تحذيرية :ـ لا يجب تشغيل أي من السـخانات قبل مرور هواء التفذية عليها . - قواطع سـخان البخخار: Steam Heater Circuit Breakers

تقوم هذه القواطع بتوصيل القدرة الكهربائية لسـخانات بخار الماء (واحد سـخان قدرة 1 واثنـين سـخان قـدرة 2.5kW 2) للفـلايـة . عنـدمـا يرتفـع ضـغط البخـار للحـد المطلوب ، قـم بفتـح الصـمام اليـدوي
 ملحوظة تحذيرية :ــ اذا ارتفـع ضـغط بخـار المـاء بحيـث تم فتتح صـمـام التتفيس للبـخـار ، قـم مباشـرة بغلق القاطع ومن ثم ابحث عن أي غلق ٌِ توصيـلات المياه .
 . عند الحاجة (thermostatic expansion valve)

الوحدة الثانية	172	التخصص
اختبـار دورات تكييف الهواء الصيفية والشتوية	أسـاسيـات تقنية تكييف الهواء- عهلي	تبريد وتكييف

10 ـ يمكـن بعـد ذلك أخـذ القـراءات (experimental data) ـ مثـال ذلكـ :ـ معـدل سـريان وسـيط التبريـد ، الضغط يِ الموقـين المبينـين ، ضغط البـخار ، درجات الحـرارة عنــد هختلـف الأوضـاع عـن طريـق المزدوجـة الحـرارية ، معدل سـريان الهواء (عند موضعين) ، الجهد AC voltage والتيار AC current للسـخانات .

إغلاق الجهاز:

لـإلاغلاق الجهاز اتبع التعليمـات التاليـة :

$$
1 \text {-قم بإغالاق كل القواطع الكهربائية. }
$$

2 - أغلق المياه
3 - قم بسحب الفيش من الجهاز
4 - إذا كان هنالك مـاء للتكثيف ، قم بتفريغه

التلدريب العملي رقّم (1)

الجدارة:

تحديد خواص الهواء قبل وبعد إجراء عملية خلط الهواء أدياباتياً ومراقبة التغير الناتج من العملية. باستخدام وحدة تكييف الهواء التعليمية الموضتحة بالشكل رقم (2-1 1).

المطلوب:
1 ـ ضبط نسبة الخلط للهواء حسب الحالة.
2 ـ قياس درجات الحرارة الرطبة والجافة.
الخطوات:
1 ـ قم بتشغيل الجهاز كمـا موضـح أعلاه.
2 ـ اضبط معدل الخلط على فتحة معينة لتعيـين نسبة الخلط.
3 ـ قم بتشغيل دورة التبريد الانضغاطية.
5 ـ تعبئة الجداول التالية حسب ظروف التشـفيل

3 3 ق قم بقياس درجتي الحرارة الجافة والرطبة للهواء المخلوط (النقطة M)			
	درجة الحرارة الرطبة		درجة الحرارة الجافة
	رمزهـا :		رمزهـا :
	قيمتها :		قيمتها:
	وحدتها :		وحدتها :

4. باستخخدام خواص الهواء السـابقة لكل حالة؛ ارسم عملية الخلط على خريطة السيـرومتري: أ. حدد النقاط (S,O,M) على الخريطة السيكرومترية. ب. بـ وصل بين النقاط الثلاثة بخط مستقيم. ثم احسب نسبة الخلط
5. قارن بين النتيجة التي حصلت عليها من الخطوة رقم (4) مع نسبة فتحة واكتب مـلاحظاتك
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقّم (2)

دورة تصييف صيفية لمنطقة رطبة وذلك عن طريق :ـ

- خلط أدياباتي
- تبريد مع إزالة رطوبة
- إعادة تسخخين

المطلوب:
1 ـ قياس درجات الحرارة الرطبة والجافة.
2 ـ ضبط نسبة الخلط للهواء حسب الحالة
3 ـ قيـاس فرق الضغط يف الموضعين بواسطة المانومتر المائل لحسـاب معدل سـريان الهواء
 . الستخان

5 ـ ضبط معدل الترطيب بالبـخار ـ إن وجد .
الخطوات:
1 ـ قم بتشغيل الجهاز كمما موضح أعلاه
2 ـ اضبط معدل الخلط على فتحة معينة
3 ـ قم بتشغيل دورة التبريد الانضغاطية
4 ـ اختر القدرة المناسبـة لسـخانات إعادة التسـخين(re-heaters) حسب الظروف الخارجيـة ملحوظة : السـخانات الأولية(pre-heaters) وغلاية البخار (steam boiler) لا تعمل ِ2ٌ هذه الحالة

5 ـ تعبئة الجدول التالي حسب ظروف التشغيل
6 ـ تمثيل الدورة على الخريطة السيكرومتهرية الجـية .

التيار (A)	الجهد (V)	
		0.5kW السخان
		1kW السخان

التيـار (A)	الجهد (V)	
		0.5kW السخان
		1kW السخان
		غلاية البخار

التيـار (A)	الجهد (V)	
		1kW السخان
		2.5kW السخان
		2.5kW السخان

$$
\begin{aligned}
& \text { 3. قم بحسـاب سـعة ملف التبريد بمسـاعدة الخريطة السيكرومتريـة. (} 4 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. قم بحسـاب كمية ماء التكثيف ان وجد. (3600× }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقّم (3)

الجدارة:
دورة تكييف صيفية لمنطقة جافة وذلك عن طريق :

- خلط أدياباتي
- تبريد محسوس - ترطيب بالبـخار

المطلوب:
1 ـ قياس درجات الحرارة الرطبة والجافة.
2 ـ ضبط نسبة الخلط للهواء حسب الحالة
3 ـ قيـاس فرق الضغط يف الموضعين بواسطة المانومتر المائل لحسـاب معدل سـريان الهواء
 . الستخان

5 ـ ضبط معدل الترطيب بالبـخار ـ إن وجد .
الخطوات:
1 ـ قم بتشغيل الجهاز كمما موضح أعلاه
2 ـ اضبط معدل الخلط على فتحة معينة
3 ـ قم بتشغيل دورة التبريد الانضغاطية
4 ـ اختر القدرة المناسبـة لسـخانات إعادة التسـخين(re-heaters) حسب الظروف الخارجيـة 5 ـ قم بتشغيل غالاية البـخار ومن ثم اضبط معدل الترطيب حسب ظروف التشغيل ملحوظة : السـخانات الأولية(pre-heaters) وسـخانات إعادة التسـخين (re-heaters) لا تعمل يْ هذه الحالة

6 ـ تعبئة الجدول التالي حسب ظروف التشغيل
7 ـ تمثيل الدورة على الخريطة السيكرومترية .

التيار (A)	الجهد (V)	
		0.5kW السخان
		1kW السخان

التيـار (A)	الجهد (V)	
		0.5kW السخان
		1kW السخان
		غلاية البخار

التيـار (A)	الجهد (V)	
		1kW السخان
		2.5kW السخان
		2.5kW السخان

$$
\begin{aligned}
& \text { 1. } \dot{m}_{s} \mathrm{~kg} / \mathrm{s} \text { (} \\
& \text { 2. قتم بحسـاب كمية معدل سـريان الهواء الخارجي. (} \dot{m}_{o} \text { (kg/s) } \\
& \text { 3. قم بحسـاب سـعة ملف التبريد بمسـاعدة الخريطة السيكرومتريـة. (} \\
& \text { 4. قم بحسـاب كمية مـاء الترطيب بالبخار. (3600× }) \\
& \text { مـلاحظات: }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب العملي رقّم (4)

الجدارة:
دورة تكييف شتوية ($T_{O}<-$ º $^{\circ} \mathrm{C}$ وذلك عن طريق

- تسخـين أولي
- ترطيب بالبخخار - إعادة تسخخين

المطلوب:
1 ـ قياس درجات الحرارة الرطبة والجافة.
2 ـ ضبط نسبة الخلط للهواء حسب الحالة
3 ـ قياس فرق الضغط ـٌِ الموضعين بواسطة المانومتر المائل لحسـاب معدل سـريان الهواء
 . الستخان

5 ـ ضبط معدل الترطيب بالبـخار ـ إن وجد . الخطوات:
1 ـ قم بتثغيل الجهاز كما موضح أعلاه 2 ـ اضبط معدل الخلط على 0\% (هواء نفي 100\%) 3 ـ قم بتشغيل غلاية البخار ومن ثم اضبط معدل الترطيب حسب ظروف التشغيل 4 ـ اخـتر القـدرة المناسـبـة للسـخانات الأوليــة (pre-heaters) وســخانات إعـادة التسـخـين(re-heaters) حسب

$$
\begin{aligned}
& \text { الظروف الخارجية } \\
& \text { ملحوظة : دورة التبريد الانضغاطية لا تعمل ٌِ هذه الحالة } \\
& 5 \text { ـ تعبئة الجدول التالي حسب ظروف التشغيل } \\
& 6 \text { ـ تمثيل الدورة على الخريطة السيكرومترية . }
\end{aligned}
$$

التيار (A)	الجهد (V)	
		0.5kW السخان
		1kW السخان

التيـار (A)	الجهد (V)	
		0.5kW السخان
		1kW السخان
		غلاية البخار

التيـار (A)	الجهد (V)	
		1kW السخان
		2.5kW السخان
		2.5kW السخان

$$
\begin{aligned}
& \text { 1. } \dot{m}_{s} \text { قم بحسـاب كمية معدل سـريان الهواء الكلي بمسـاعدة قراءة الفوهـة. (} \\
& \text { 2. قتم بحسـاب كمية معدل سـريان الهواء الخارجي. (} \dot{m}_{o} \text { (kg/s) }
\end{aligned}
$$

3. قم بحسـاب سـعة ملف التسـخـين الأولي بمسـاعدة الخريطـة السيـكرومترية. (3) بالقيــة ($\left.1 \times V \times 10^{-3} \mathrm{~kW}\right)$
4. قم بحسـاب سعة ملف اعادة التسـخين. ($\left.1 \times V \times 10^{-3} \mathrm{~kW}\right)$ ($\dot{m}_{s} \times \Delta h \mathrm{~kW}$ ومقارنتـه بالقيمة

$$
\text { 5. قم بحسـاب كمية مـاء الترطيب بالبـخار. } \text { بـر }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

التلدريب المملي رقّم (5)

> الجدارة:
> دورة تكييف شتوية ($T_{O}>-4^{\circ} \mathrm{C}$ وذلك عن طريق :
> -
> - ترطيب بالبخخار - إعادة تسخخين
> المطلوب:

1 ـ قياس درجات الحرارة الرطبة والجافة.
2 ـ ضبط نسبة الخلط للهواء حسب الحالة
3 ـ قياس فرق الضغط ـٌِ الموضعين بواسطة المانومتر المائل لحسـاب معدل سـريان الهواء
 . السـخان

5 ـ ضبط معدل الترطيب بالبـخار ـ إن وجد . الخطوات:
1 ـ قـم بتشغيل الجهاز كمـا موضـح أعلاه
2 ـ اضبط معدل الخلط على فتحة معينة
3 ـ قم بتشغيل غلاية البخار ومن ثم اضبط معدل الترطيب حسب ظروف التشغيل
4 ـ اختر القدرة المناسبـة لسـخانات إعادة التسـخين(re-heaters) حسب الظروف الخارجيـة ملحوظة : السـخانات الأولية(pre-heaters) و دورة التبريد الانضغاطية لا تعمل ِ2ٌ هذه الحالة 5 ـ تعبئة الجدول التالي حسب ظروف التشغيل 6 ـ تمثيل الدورة على الخريطة السيكرومترية .

التيار (A)	الجهد (V)	
		0.5kW السخان
		1kW السخان

التيـار (A)	الجهد (V)	
		0.5kW السخان
		1kW السخان
		غلاية البخار

التيـار (A)	الجهد (V)	
		1kW السخان
		2.5kW السخان
		2.5kW السخان

$$
\begin{aligned}
& \text { 1. } \dot{m}_{s} \text { قم بحسـاب كميـة معدل سـريان الهواء الكلي بمسـاعدة قراءة الفوهـة. (} \\
& \text { 2. قتم بحسـاب كمية معدل سـريان الهواء الخارجي. (} \dot{m}_{o} \text { (kg/s) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. قم بحسـاب كميـة مـاء الترطيب بالبـخار. (3600× }) \text { (}
\end{aligned}
$$

مـلاحظات:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

أساسيات تقنية تكييفالهواء- عملي

تــاريزن على حسـاب أحمال التبريـلـ والتدفئة

الجلارة: القدرة على حسـاب أحمـال التبريد والتدفئة لأنواع مختلفة من المباني.

الأهداف: عندمـا تكمل هذه الوحدة تكون قادراً على:

1. تحديد المعلومـات الجفرافية عن المبنى.
2. تحـديد ظروف التصـيم الخارجيـة والداخلية.
3. حسـاب الحرارة المنتقلة عبر الجدران والأسقف والأرضية.
4. حسـاب الحـرارة المتسـرية خـلال الزجاج.
5. حسـاب الأحمال نتيـجة لـلأشخخاص.
6. حسـاب الأحمـال نتيجـة لـلاضاءة.
7. حسـاب أحمـال التهوية والتسـرب.
8. تمثيل نظام التكييف على الخريطة السيكرومترية.
9. تحـديد سعة ملف التبريد باستتخدام الخريطة السيكرومترية .
10. استتخدام النموذج الخاص بحسـاب الأحمال الحرارية وتطبيقه على برنامـج إكسل.

مستوى الأداء المطلوب:
أن لا تقل نسبـة إتقان هذه الجدارة عن 90٪.

الوقتت المتوقع للتلدريب:

10 سـاعات دراسيـة.

الوسـائل المسـاعلـة:

1. الوحدة السـادسـة من حقيبة النظري الخاصة بالأحمـال الحرارية.
2. الوحدة الخاصة بالعمليـات السيكرومترية يْ المواضيع النظرية.

متطلبـات الجلارة:

التـدرب على مهارة: حسـاب انتقال الحراة عبر الأسطح ، استتخدام الخريطة السيكرومترية.

دراسلة حالة: حساب الأحمال الحرارية لقاعة تـدريس

المعلومات التالية لمدينة الرياض تم إيجادهـا من برنامـج E20 - II والتابع لشركة CARRIER.

المعلومات پٌِ هذا البرنامـج بالوحدات الإنجليزية وتم تحويلها إلى وحدات SI كمـا هٌِ الجدول التالي:

الموقع: مدينة الرياض

البيانات التصميمية:

الرياض		اسم المدينة
المملكة العربية السعودية		القطر
25.7°		خط العرض
-46.7 ${ }^{\circ}$		خط الطول
624 m	2047 ft	الارتفاع عن سطح البحر
$43.3{ }^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{F}$	درجة التصميم (db) ـ (صيفاً)
$25.5{ }^{\circ} \mathrm{C}$	$78^{\circ} \mathrm{F}$	درجة التصميهم (wb) ـ (صيفاً)
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	المدى اليومي الصيفي
$2.8 \approx 3^{\circ} \mathrm{C}$	$37^{\circ} \mathrm{F}$	
0.20	0.20	متوسط الانعكاس الأرضي اليومي
$0.1154 \frac{\mathrm{~W}}{\mathrm{mK}}$	$0.800 \frac{B T U}{h r ~ f t ~ F}$	موصلية التربة
	-3 hours	التوقيت المحلي (GMT + /-N hours)

> أ أ ـ حســاب أحمـال التبريد.

مواصفات القاعة:
$30 m \times 20 m \times 4 m$
أبـاد القاعةة:
المسـاحات الزجاجية:
$8 m^{2}$
$10 m^{2}$
$10 m^{2}$
$10 m^{2}$
$7 m^{2}$
$7 m^{2}$
500
-

- من النـاحية الشـرقية
- من النـاحية الغربيـة
الأبواب :
-
- من النـاحية الشرقيـة
- من النـاحية الغربية
- عدد الأشـخاص بالقاعة

مخطط القاعة:

شكل (3 - 1): مخطط القاعة الدراسية

حساب أحمال التبريد :

$43^{\circ} \mathrm{C}(d b)$,	$26^{\circ} \mathrm{C}(w b)$,	$R H=24 \%$	$\omega_{0}=0.014 \mathrm{~kg} / \mathrm{kg}$	شروط التصميم الخارجية التصميم الداخلية

لحسـاب معامل انتقال الحرارة الكلي من المعلومـات التاليـة:

$$
\begin{gathered}
\quad h_{o}=20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
h_{i}=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
x_{w}=0.30 \mathrm{~m} \\
k_{w}=0.8 \mathrm{~W} / \mathrm{mK}
\end{gathered}
$$

معامل انتقال الحرارة بالحمل الخارجي
معـامل انتقال الحـرارة بـالحمل الداخلي

سمك جدار الحائط

معامل التوصيل الحراري للحائط

$$
x_{p}=0.16 \mathrm{~W} / \mathrm{mK}
$$

سمك الطلاء

$$
k_{p}=0.16 \mathrm{~W} / \mathrm{mK}
$$

$$
\begin{aligned}
& \frac{1}{U}=\frac{1}{h_{i}}+\frac{1}{h_{o}}+2 \frac{x_{p}}{k_{p}}+\frac{x_{w}}{k_{w}} \\
& U=1.8 \mathrm{~W} / \mathrm{m}^{2} K
\end{aligned}
$$

إذن معامل انتقال الحرارة الكلي

جدول (3 - 2): أحمـال الجدران للقاعة الدراسية (صيفاً)

$37461 \mathrm{~W}=37.461 \mathrm{~kW}$

أحمـال الجدران + السقف + الأرضية

أحمال الإضاءة:
تحسب أحمـال الإضاءة من المعادلة التالية

$$
Q_{L}=N \times P \times F \times(D F)
$$

$=1.0$ for bulb lamps
DF

بهـا أن عدد اللمبات (فلورسنت) التي توجد بـصـالة الدراسـة (المسـرح) عـددهـا 428 لمبـة قــرة كـل

أحمـال الأشخاص:
تعين الحرارة المحسوسـة التي يعطيها شـاغلو المكان بالمعادلة التالية: $Q_{p_{s}}=n \times q_{p_{s}} \times(D . F$.

وتعين الحرارة الكامنة التي يعطيها شـاغلو المكان بالمعادلة التالية $Q_{p_{L}}=n \times q_{p_{L}} \times(D . F$.

حيث إن :
n عدد الأشخخاص داخل المكان المكيف ـ
ـ مـعامل التباين (Diversity Factor) والذي يأخذ يِّ الاعتبار عدم تواجد كل الأشـخاص پِ نفس DF

خطة حمل الذروة ويعين من الجداول
ـ ـمعدل الحرارة المحسوسـة التي يعطيها كل شـخص
$q_{p_{L}}$
ـ معدل الحـرارة الكامنة التي يعطيها كل شـخص
ومن الجـداول يمـكن إيجاد الحـرارة المحسوسـة والكامنة لكل شـخص أي:

$$
Q_{p}=28.800+18.000=46.800 \mathrm{~kW}
$$

$$
\begin{aligned}
& q_{p_{s}}=72 \mathrm{~W} \quad q_{p_{l}}=45 \mathrm{~W} \\
& Q_{p}=N \times(q / \text { person }) \times \text { D.F. } \\
& Q_{p_{s}}=500 \times 72 \times 0.8=28800 W=28.800 \mathrm{~kW} \quad \text { الحـل المحسوس للأشـخاص } \\
& Q_{p_{1}}=500 \times 45 \times 0.8=18000 \mathrm{~W}=18000 \mathrm{~kW} \quad \text { الحمل الكامن لـلأشـخاص } \\
& Q_{p}=Q_{p_{s}}+Q_{p_{l}} \quad \text { أحمال الأشخخاص الكلي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ، } D F=0.80 \text { ملمبة } 20 \text { W مليه يكون حمل الإضاءة باعتبار } \\
& Q_{L}=428 \times 20 \times 1.25 \times(0.8) \\
& =8560 \mathrm{~W}=8.560 \mathrm{~kW}
\end{aligned}
$$

يستعهـل كثير من المصمــين نظام معدل تغيير الهواء للفرفة /السـاعة (N) حيث يحسب الحـمل الكلي للتسرب أو التهوية (Q) بالمعادلة التالية

$$
Q_{v}=\frac{A C H \times V \times \Delta h}{3600 \times v_{o}}
$$

$V=\left[m^{3}\right]$
$\dot{V}=\left[\mathrm{m}^{3} / \mathrm{s}\right]$
$v_{o}=\left[m^{3} / \mathrm{kg}\right]$
ACH
$H=4 m$
وبمـا أن ارتفاع القاعة
$A=30 \times 20=600 \mathrm{~m}^{2}$
ومسـاحة الأرضية
$V=A H=600 \times 4=2400 \mathrm{~m}^{3}$
: حجم القاعة
($A C H=3$
حجم الحيز أو الغرفة
حيث: معدل سـريـان الهواء الحـجمي
الحجم النوعي للهواء الخارجي
معدل تفير الهواء ـٌِ السـاعة
وبمـا أن ارتفاع القاعة
معدل سـريان هواء التهوية باعتبـار
ومن الخريطة السيكرومترية (عند ($43{ }^{\circ} \mathrm{C} C(d b), 26^{\circ} \mathrm{C}(w b)$

$$
\begin{aligned}
v_{0} & =0.917 \mathrm{~m}^{3} / \mathrm{kg} \\
\dot{m} & =\frac{A C H \times V}{3600 v_{0}} \\
\dot{m} & =\frac{3 \times 2400}{3600 \times 0.917}=2.18 \mathrm{~kg} / \mathrm{s} \\
h_{N} & =69.5 \mathrm{~kJ} / \mathrm{kg} \\
h_{0} & =79.5 \mathrm{~kJ} / \mathrm{kg} \\
h_{R} & =51.0 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{v_{s}}=\dot{m}\left(h_{N}-h_{R}\right) \\
& Q_{v_{s}}=2.18(69.5-51.0)=40.330 \mathrm{~kW} \\
& Q_{v l}=\dot{m}\left(h_{0}-h_{N}\right) \\
& Q_{v_{l}}=2.18(79.5-69.5)=21.800 \mathrm{~kW} \\
& Q_{v}=Q_{v_{S}}+Q_{v l}
\end{aligned}
$$

حمل التهوية المحسوس

حمل التهوية الكامن

حمل التهوية
$Q_{v}=40.330+21.800=62.130 \mathrm{~kW}$

$$
\begin{aligned}
& Q_{v}=\dot{m}\left(h_{o}-h_{R)}\right. \\
& Q_{v}=2.18(79.5-51.0)=62.130 \mathrm{~kW}
\end{aligned}
$$

يمكن التعبير عن كمية الحرارة المنتقلة خلال الأسطح الزجاجية بالمعادلة التالية $Q_{r a d}=A \times I \times(S C)$

$$
\begin{aligned}
& Q_{\text {rad }}=[k W] \\
& I=\left(W / m^{2}\right) \\
& S C=[N o n e]
\end{aligned}
$$

اتجاه المسـاحة الزجاجيـة Glass Dierction	السساحة الزجاحية $A\left\{m^{2}\right\}$	شدة الإشعاع (I) $\left\{W / m^{2}\right\}$	SC	$\mathrm{Q}_{\text {rad }}$ (W)
N	8	130	0.83	863
S	-	150	0.83	-
W	10	600	0.83	4980
E	10	660	0.83	4980
				10832

جدول (3 - 3): الكسب الإشعاعي للمسـاحات الزجاجية

$$
Q_{\mathrm{rad}}=10832 \mathrm{~W}=10.832 \mathrm{~kW}
$$

الكسـب الإشـعاعي خـلال المسـاحات الزجاجية
تحليل أحمـال التبريد (محسوس ، كامن) :ـ. بوحدات (kW)

\%		$\begin{gathered} \text { جمل كامن } Q_{1} \end{gathered}$	$\begin{gathered} \text { حمل محسوس }\{k W\} \\ Q_{s}\{k \end{gathered}$	نوع الحمل
22.6	37.461	-	37.461	أحمال التوصيل
05.2	8.560	-	8.560	أحمال الإضاءة
06.5	10.832	-	10.832	
28.2	46.800	18.000	28.800	أحمال الأشخاص
37.5	62.130	21.800	40.330	حمل التهوية
100	165.783	39.800	125.983	

جدول (3-4): تحليل أحمـال التبريد

$$
S H F=\frac{Q_{s}}{Q_{t}}=\frac{125.983}{165.783}=0.76
$$

معامل الحرارة المحسوس للفرفة
سـعة ملف التبريد

نموذج حسـاب الأحمـال الحرارية

الملدينة ، المنطقة.
اسم الششروع.
اسم المستخدم.
ظروف التصميم الخارجية
ظروف التصهيم الداخلية

				(أحمال الجدران	
	A (m2)	$\mathrm{U}\left(\mathrm{w} / \mathrm{m}^{2} \mathrm{~K}\right)$	$\Delta \mathrm{t}(\mathrm{K})$	Q (W)	
الحوائط الرأسية					
N					
S					
W					
E					
النوافذ					
N					
S					
W					
E					
الأبواب					
N					
S					
W					
E					
السقف					
الأرضية					
الكسب الحراري الكلي					
$Q_{\text {rad }}=A \times I \times(S C) \quad\left(Q_{\text {rad }}\right)$ (الكسب الإشماعي خلال المساحات الزجـاجية					
اتجاه المسـاحة الزجاجية Glass Dierction	 A\{ m	الإشعاع $\{W /$		SC	$\mathrm{Q}_{\text {rad }}$ (W)
N					
S					
W					
E					

لوحلدة الثالثة 	عملي	تـبريد وتكييف
للفرفة	$(k W)$	

نموذج حسـاب الأحمـال الحرارية

الملينة ، المنطةة: الريـاض ، المنطقة الوسطى اسم الاششروع : قـاعة مؤتنرات
 $43^{\circ} \mathrm{C}(d b), \quad 26^{\circ} \mathrm{C}(\mathrm{wb})$ ظروف التصييه الخارجية $25^{\circ} \mathrm{C}(\mathrm{db}), \quad 18^{\circ} \mathrm{C}(\mathrm{wb})$ ظروف التصصيم الداخلية

				أحمال الجـدران	
	A (m2)	$\mathrm{U}\left(\mathrm{w} / \mathrm{m}^{2} \mathrm{~K}\right)$	$\Delta \mathrm{t}$ (K)	Q (W)	
الحوائط الرأسية					
N	102	1.8	18	3305	
S	120	1.8	18	3888	
W	63	1.8	18	2041	
E	63	1.8	18	2041	
					11275
النواضذ					
N	8	5.6	18	806	
S	-	-	-	-	
W	10	5.6	18	1008	
E	10	5.6	18	1008	
					2822
الأبواب					
N	10	3.0	18	540	
S	-	-	-	-	
W	7	3.0	18	378	
E	7	3.0	18	378	
					1296
السقف	600	2.0	18	21600	21600
الأرضية	600	0.26	03	468	468
الكسب الحراري الكلي					37461
اتجاه المسـاحة الزجاجية Glass Dierction	 اجـاحيـة A\{m	الإشعاع $\left\{W^{\prime}\right.$		SC	$\mathrm{Q}_{\text {rad }}$ (W)
N	8			0.83	863
S	-			0.83	-
W	10			0.83	4980
E	10	66		0.83	4980

ملحوظة: على المتدرب إعادة حسـاب الأحهـال حسب النموذج أعلاه باستتخدام برناهـج إكسـل المتوفر لدى الجميع.

حساب أحمال التبريـد بـالطريقة التقريبية :

1 ـ طريقة مسـاحة الأرضية: (Floor Area Method)
$0.30 \mathrm{~kW} / \mathrm{m}^{2}$
$A=30 \times 20=600 \mathrm{~m}^{2}$

نفرض مسـاحة الأرضية
$Q_{c c}=A \times\left(q\left\{k W / m^{2}\right\}\right) \quad$ إذن الحمل الكلي للتبريد
$Q_{c c}=600 \times 0.30=180 \mathrm{~kW}(\approx 51.5 \mathrm{TR})$

2 ـ نسبة خلط الهواء: (Air Mixing Ratio)

$$
\begin{aligned}
& \dot{V}=\frac{A C H \times V}{3600} \\
& \dot{V}=\frac{3 \times 2400}{3600}=2 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

كمـا سبق فإن معدل سـريان الهواء الحـجمي

و باعتبار نسبة الخلط 1:4، يكون حجم هواء التفذية

$$
Q_{c c}=10 \times 5=50 \mathrm{TR}
$$

إذن حمل ملف التبريد الكلي
ملحوظة: لاحظ تقارب القيم الثلاث

$$
\begin{aligned}
& \dot{V}_{s}=5 \times 2=10 \mathrm{~m}^{3} / \mathrm{s} \\
& 0.20 \frac{\mathrm{~m}^{3} / \mathrm{s}}{T R} \text { وحسب نظام ASHRAE } O R \quad=5 \frac{T R}{\mathrm{~m}^{3} / \mathrm{s}} \text { وفرض } 0 \text { و } \\
& \dot{V}_{s}=10 \mathrm{~m}^{3} / \mathrm{s} \\
& \text { وبهـ أن الحجم الكلي لهواء التغذية }
\end{aligned}
$$

$$
\begin{aligned}
& \quad Q_{p}=28.800+18.000=46.800 \mathrm{~kW} \\
& H=4 \mathrm{~m} \\
& A=30 \times 20=600 \mathrm{~m}^{2} \\
& V=A H=600 \times 4=2400 \mathrm{~m}^{3}
\end{aligned}
$$

وبمـا أن ارتفاع القاعة ومسـاحة الأرضية ㄷ حجم القاعة
ACH=3 = (من الجداول)
($A C H=3$
معدل سـريان هواء التهوية باعتبـار ومن الخريطة السيكرومترية (عند ($3{ }^{\circ} C(d b), ~ 0^{\circ} C(w b)$

$$
\begin{aligned}
v_{0} & =0.784 \mathrm{~m}^{3} / \mathrm{kg} \\
\dot{m} & =\frac{A C H \times V}{3600 v_{0}} \\
\dot{m} & =\frac{3 \times 2400}{3600 \times 0.784}=2.55 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
h_{0} & =9.0 \mathrm{~kJ} / \mathrm{kg} \\
h_{R} & =44.5 \mathrm{~kJ} / \mathrm{kg} \\
h_{N} & =30.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
Q_{V_{s}}=\dot{m}\left(h_{N}-h_{R}\right)
$$

$$
Q_{v_{s}}=2.55(30.5-44.5)=-35.700 \mathrm{~kW}
$$

حمل التهوية الكامن

$$
\begin{aligned}
& Q_{v_{l}}=\dot{m}\left(h_{o}-h_{N}\right) \\
& Q_{v_{1}}=2.55(9.0-30.5)=-54.826 \mathrm{~kW}
\end{aligned}
$$

حمل التهوية الكلي

$$
\begin{aligned}
& \quad Q_{v}=Q_{v_{s}}+Q_{v l} \\
& Q_{v}=-35.700+(-54.826) \quad \Rightarrow \quad Q_{v}=-90.526 \mathrm{~kW} \\
& \\
&
\end{aligned}
$$

هذا الكسـب لا يعتبر عند حسـاب أحمـال التسـخين نسبـة لأن وقـت تخمـين أحمـال التسـخين يكـون

تحليل أحمال التسخـين (محسوس، كامن): بوحدات (kW)

$\begin{gathered} \text { الحمل الكلي } \\ Q_{t} \end{gathered}$	جمل كامن Q_{1}	$\text { حمل محسسوس } \begin{gathered} \text { حمs }\{k W\} \end{gathered}$	نوع الحمل
-44.884	-	-44.884	أحمال التوصيل
8.560	-	8.560	أحمال الإضال الوهاءة
46.800	18.000	28.800	أحمال الأشخاص
-90.526	-54.826	-35.700	حمل التهوية
-80.050	-36.826	-43.224	الحمل الكلي

جدول (3 - 6): تحليل أحمـال التسخـين

حمل التسـخين الكلي اللازم للتخلص من ناتج تسرب الحـرارة إلى القاعة

$$
=80.050 \mathrm{~kW}=19.212 \mathrm{kcal} / \mathrm{s}=273324 \mathrm{BTU} / \mathrm{hr}
$$

الوحلدة الثالثة
 تقارين

1. احسب حمل الإضاءة الـلازم باعتبـار مسـاحة الغرفة مبينا عدد اللمبـات الـلازمـة (فلورسـنت أو عاديـة) $40 \frac{W}{m^{2}}$ وذلك باعتبار شدة الإضاءة لكل متر مربع تسـاوي
2. كـم يكون حمل التهوية (صيفا وشتاء) إذا كان معدل التهوية للشـخص الواحد يعادلs 5 § 3. إذا تم إضـافة عـازل للفرفـة بســك 100 mm، هـاهو الـتغير الـذي يطـرأ علـى حهـل الحـوائط الرأسـية (صيفا وشتاء) إذا كان معامل التوصيل للعازل يسـاوي $0.035 \frac{\mathrm{~W}}{\mathrm{~m} K}$.
3. اذكر التفير الذي يطرأ على بعض أحمال التبريد عندمـا تتغير الأحوال الخارجية إلى: $30^{\circ} \mathrm{C}(\mathrm{db}), 25^{\circ} \mathrm{C}(\mathrm{wb})$

مصطلحات ورمـــوز

Mass flow rate	kg / s	\dot{m}	معدل تدفق الكتلة
mass	kg	m	الكتلة
Condensed water	kg/s	\dot{m}_{w}	كمية مـاء التكثيف/ الترطيب
Air mass flow rate	kg / s	\dot{m}_{a}	معدل سـريان الهواء
Total pressure	Pa	p	الضغط
Pressure difference	Pa	Δp	فرق الضغط
Air pressure	Pa	p_{a}	ضi
Vapor pressure	Pa	p_{v}	ضغط بخار الماء
Specific heat	J / kgK	c_{p}	الحرارة النوعية
Cooling coil capacity	W	$Q_{c c}$	سعة ملف التبريد
Heating coil capacity	W	$Q_{\text {hc }}$	سعة ملف التسخـين
Sensible heat load	W	Q_{s}	حمل الحـرارة المحسوسة
latent heat load	W	Q_{1}	حمل الحرارة الكامنة
Air vlome	m^{3}	V_{a}	حجم الهواء
Vapor volume	m^{3}	V_{v}	حجم بخار الماء
Air temperature	K	T_{a}	درجة حرارة الهواء
Vapor temperature	K	T_{v}	درجة حرارة البخار
Dry bulb temperature	${ }^{\circ} \mathrm{C}$	$T_{\text {db }}$	درجة الحرارة الجافة
Wet bulb temperture	${ }^{\circ} \mathrm{C}$	$T_{w b}$	درجة الحرارة الرطبة
Relative humidity	\%	RH	الرطوبة النسبية
Specific humidity	kg/kg	ω	الرطوبة النوعية
Total load	W	$Q_{\text {t }}$	الحمل الكا
Ton of Refrigeration	TR	TR	طن التبريد
Wall gains (conductive heat gains)	W	Q_{c}	حمل الجـدران(حمل التوصيل)
Radiation load	W	Q_{r}	حمل الإشعاع

Heat gains from people	W	Q_{p}	حمل الأشـخاص
Heat gains from lghts	W	Q_{1}	حمل الإضاءة
Ventilation load	W	Q_{v}	حمل التهوية
Heat gains from equipment	W	Q_{e}	حمل الأجهزة
Miscellaneous loads	W	Q_{m}	أحمال مختلفة
Specific heat factor	-	SHF	معامل الحـرارة المحسوس
Overall heat transfer coefficient	$W / m^{2} K$	U	معامل التوصيل الحراري الكلي
Room or space temperature	${ }^{\circ} \mathrm{C}$	$T_{\text {R }}$	درجــة حــرارة الغرفــة أو الحيـز الصـ المكيف
Internal temperature	${ }^{\circ} \mathrm{C}$	T_{i}	درجة الحرارة الداخلية
Outside temperature	${ }^{\circ} \mathrm{C}$	To	درجة الحـرارة الخارجية
Supply air temperature	${ }^{\circ} \mathrm{C}$	T_{S}	درجة حرارة هواء التغذية
Temperature difference	${ }^{\circ} \mathrm{C}$	ΔT	فرق درجات الحـرارة
Radiation intensity	W / m^{2}	I	شـدة الاشعـع
Absorptivity factor	-	α	معامل الامتصاص
Internal heat transfer coefficient	$W / m^{2} K$	h_{i}	معامل انتقال الحـراري الداخلي
External heat transfer coefficient	$W / m^{2} K$	h_{0}	معامل انتقال الحراري الخارجي
Enthalpy	kJ/kg	h	طاقة الإنثالبي
Shading coefficient	-	SC	معامل التظليل
Ventilation load -sensible	W	$Q_{v s}$	حمل التهوية المحسوس
Ventilation load -latent	W	$Q_{v 1}$	حمل التهوية الكامنة
Specific volume@ outside conditions	m^{3} / kg	v_{0}	الحـجــم النــوعي عنـــــ الأحــوال الخارجية
Latent heat of vaporization	kJ/kg	$h_{\text {fg }}$	الحـرارة الكامنة للتبخير
volume	m^{3}	V	الحجم
Discharge (volume flow rate)	$m^{3} s^{-1}$	Q	معدل السـريان الحـجي

number	-	n, N	عدد
Lamps factor	-	F	معامل اللمبات
Diversity factor	-	DF	معامل التباين
efficiency	-	η	الكفاءة
Saturation efficiency	-	η_{s}	كفاءة التشبع
Contact factor	-	η	معامل التلامس لملف التبريد
Air change per hour	$h r^{-1}$	ACH	معدل تغيير الهواء ِِّ السـاعة
Cooling load	W	CL	حمل التبريد

المراجع REFERENCES

المرجع	\bigcirc
د. رمـضـان أحهـد محمـود، 1987 (تكييـف الهـواء- مبـادىء وتطبيقـات) كلية الهندسة- جامعة الإسكندرية ، منشأة المعارف بالإسكندرية	1.
د. رمـضـان أحمــد محمـود ، 1987 (تكييــف الهـواء- مـسـائل محلولــة) كلية الهندسة- جامعة الإسكندرية، منشـأة المعارف بالإسكندرية	2.
سي.تي.كوزلنج، ترجمة د. حسن خصـا ف و م. رامز فرج بابو اسـحق، 1985 (تكييف الهواء ولتبريد التطبيقي) الجامعـة التكنولوجيـة، مركـز التعريب والنشر، بغداد.	3.
V. Paul Lang, 1987 "Principles of Air Conditioning", $4^{\text {th }}$ Edition, Delmar.	4.
Edward G. Pita, $1998 \begin{gathered}\text { "Air Conditioning Principles And Systems" } 3{ }^{\text {rd }} \\ \text { Edition, Prentice Hall, New Jersey, Columbus, Ohio. }\end{gathered}$.	5.
Edward G. Pita, 1981 "Air Conditioning Principles And Systems: An Energy Approach" $3^{\text {rd }}$. Edition, John Willey \& Sons, Inc.	6.
W. P Jones, 1997 "Air Conditioning Applications And Design" $2^{\text {nd }}$ Edition, John Willey \& Sons, Inc. New York-Toronto.	7.
Whitman. Johnson \& Tomczyk, 2000 "Refrigeration And Air Conditioning Technology" $4^{\text {th }}$ Edition, Delmar.	8.
Althouse. Turnquist. Bracciano, 1996 "Modern Refrigeration And Air Conditioning" The Goodheart-Willcox Company, Inc.	9.
Faye \& Parker, 1994 "Heating, Ventilating And Air Conditioning" Analysis \& Design. $4^{\text {th }}$ Edition, , John Willey \& Sons, Inc.	10.
Shan. K. Wang, 1994 "Handbook Of Air Conditioning And Refrigeration" McGraw-Hill.	11.
ASHRAE " Volume Of Fundamentals"	12.

المحتويـات

مقدمة
تثهيل
4. التدريب العملي رقم (1)
7. التدريب العملي رقم (2)
10 التدريب العملي رقم (3)
13 التدريب العملي رقم (4)
16 التدريب العملي رقم (5)19التدريب العملي رقم (6)

1..

3.

9...
\qquad
66.
67.
70.

التدريب العملي رقم (1)
التدريب العملي رقم (2)
التدريببالعملي رقم (3)
التدريب العملي رقم (4) ب
التدريب العملي رقم (5) .
حساب أحمال التبريد.
نوذج حساب الأحمال الحرارية
حساب أحمال التدفئة. .
مصطاتحاتورمـوز ..
0.. المراجع

